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Chapter I

INTRODUCTION TO THE MACHINE

1.1 TYPE OF COMPUTATION

VASTOR is a word-parallel, bit-serial computer. It
can, for instance, logically AND bits 37 and U4a (2ll numbers
herein are hexadecimal wherever an excuse may be found) of

all words of memory and place the result in, say, bit 52.

Adjacent bits may be organised into fields within the
rather large words VASTOR uses (1K bits at the moment), and

the machine made to operate serially on the bit positions of

the fields.

On the present machine, for instance, one <could logi-
cally OR two fields bit-by-bit by using a FORTRAN call: e.g.

CALL FOR( WIDTH, SRC1, SRC2, DST)

1.2 STRUCTURE OF THE MACHINE

The idea with this machine is that overhead for control
circuitry is amortizsd over a large number of words, sovthat
the dominant cost is that of memory. It is therefore impor-
tant to keep the complexity of backplane wiring and control
information down, and we have therafore gone *to some trouble

- 1 -



to limit the «class of communication between system compo-
nents to two types: 'bussingt and 'daisy-chaining'. all
memory address lines, for instance, are common and driven
from a central controller, as are opcodes for the
'Industrial Control Units! (MC14500B 'ICU') which ©perfornm

logical operations on each word.

The repeating unit - the word - in this machine takes
about 2 1/2 chips, 16 of these fit on a board, with space

left over for a CCD backing store of 16K bits.

Provision is made for expansion by extending the 1-bit
data wires for all 16 words on a board to an adjacent con-
nector in the card cage. We have several ideas in progress
for such expansion boards, whicﬁ provide the means of tai-

loring the machine to unusual applications.

1.3 DATATYPES

We can treat fields somewhat differently and perfornm
arithmetic or character-oriented operations on them: e.qg.
CALL VPV( WIDTH, SRCO, SRC1, C IN, DST)

adds the two SRC fields and a carry-in bit into DST.

This machine is naturally vector-oriented, and we
therefore use APL notation to describe its operation. The
examples so far have been 2lsment-by-element extensions of
simple scalar operations to vectors.

- 2 -



1.4 THE RESULT REGISTER

The ICU in each word contains a flip-flop called the
result register (RR) which is used as a 1-bit accunulator.
The boolean vector formed by these can be summed (*+/BRR') to
a finites resolution, this information allowing the central
controller to branch on such interesting conditions as
'0=+/RR?',

CALL MATCH( WIDTH, SCALAR, SRC)

us2s this sum to associatively search vector SRC for SCALAR.

1.5 IEN BAND OQEN

The ICTY contains two more bits of storage from which
come the input enabling vactor (IEN) and the output enabling
vector (OEN). OEN allows selective writeback: stores to me-
mory will only succeed in those words in which OEN is set.
IEN is AND'ed with all input data to the 1logic apparatus.
These vectors are therefore usually set up to mask avay
words that should not be affected by the current operation.

This is the principal way to operate differently on differ-

ent vords.

'

1.6 INTERWORD COMMUNICATION
A truly associative machine imposes no order on. +the
words contained in it. This <can be inconvenient (as when

two words come to have the same contents and can nevermore



be distinguished), so VASTOR orders them with a shift regis-
ter (SH). This mechanism allows indexing, and therefore

sorting and so forth, and incidentally makes I/O possible.

Some useful APL expressions involving SH are: v+ /870,

T+ A' and '1|A°Y,

1.7 A TYPICAL WORD

The elements dzscribed above are interconnected as

shown in figure 1.

1.8  INPUT/QUTPUT

Data may enter SH a bit at a time from the controller,
but this is not an adequate channel for large amounts. In a
rare concession to reality, a data path was designed for
8-bit bytes from a scalar computer. Figure 2 depicts the

detaills of the connection of SH to an outside world.

The SHifter has two ports: B, connected to the 1-bit
data path in the word and A, which is the means of external
access., Eight data lines serve the A port, so that words
are grouped in eights: thus if we can load successive
'phrases!' (8 word groups) with bytes of data, and then load
a phrase of data into 8-bit fields of a word in each phrase,
we will have done 1/8 of the work involved in transferring
data by bytes, The shifters chosen are (coincidentally) 8

bits long, so that a shifter corresponds to a phrase.
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n order to loal but a single phrase (i.e. a single
shift register) at a time, another - faster- shift register
is used 'to distribute coatrol, This shifter (hereinafter
LsR, after the famous physicist,Low Power Schottky) controls

a2 line on SH that enables its 'A' side. If only 1 bit i& set

in LSR, then only the corresponding phrase of SH may be



In order to read data by bytes, we must reverse the
above process: we first read an 8-bit field from one word
out of each phrase into the top of its SHifter, and then
read bytes out of successive phrases to the scalar machine
via the 'A' bus (again by shifting a single '1? through
LSR) .

Two multiplexers are used to achieve this - those la-
belled SHCCIRC (SHifter Column CIRCulate) and SHMODE
(SHifter MODE) in figure 2. SHCCIRC makes any chosen word

per phrase available to SHMODE, which then may pass it into

the top of SH.

SHMODE selects whether SH behaves (on being clocked in
serial mode) as a boolean vector, an eight column boolean
matrix, or a sixteen column boolean matrix. SHCCIRC can con-

fuse the issue, but the modes mentioned are the ones known

to be useful,

1.9 FLAMES

Due to the extensive use of 3-state devices it is quite
possible for several drivers to attempt to assert themselves
simultaneously on the same wire. Hardware is installed to
protect the system from this situation, but the side effects

of an attempt to induce it are unpredictable and nay destroy

data, especially that in SH.



The first bus on which this can occur is 'A': if more
than one <shifter is enabled to drive that bus a conflict
could occur. A 2-bit counter decides whether more than one
'1" has been clocked into LSR since it was last cleared., 1If

so, it uses a common line to prevent any shifter from writ-

ing to ‘&',

The second place for a conflict is on the B side of the
shifter: memory, ICU and SHifter are all capable of driving
this node. An 'enable' line exists for the memory, so that
it is relatively easy to turn off; the ICU may be driving
this node if the last opcode was some kind of "STORE'; and
the shifter must drive either 'a' or 'B', except that LSR
can force the 'A' outputs high-impedance. If nmore than one
'1' is in (or thought to bz in) LSR, the HCF (halt and
catch-fire) detector will force SH to drive 'B', and there-

fore forbid 'STORE' opcodes and memory references.

1.10 CONTROLLER STRUCTURE

Figure 3 shows the hierarchic position of the simple-
minded microcontroller that drives VASTOR. The controller
that actually exists is yst simpler, and relies heavily on

the PDP-11/34 to emulate the one we describe.
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1.10.1  ROH

bits cor-

~There exists a read-only memory (ROHM) whose

tespeond approximately to wires on the VASTOR backplane,

in which are stored the

O]

ignal sequences required to perforn



desired operations. VNote that the 'ROM' is at present re-

ally a table in the 11/34,

Before hardware came APL: we wrote a simulator for the
word structure planned, keesping in mind available IC's, and
developed a control structure (entirely in APL) to allow us
to test early algorithms. This has since turned into a mi-

crocode development system described more fully in chapter

4,

1.10.2 ROM start addressas

The 'microprocessor' shown in figure 3 makes up start-
ing addresses (and a lot of other things) for the controller
and puts them in an area of two-port memory (this byte is
called ROMADD{1]) from which the controller retrieves thenm
when ready. This scheme allows the microprocessor to work

on preparing the next start address (and those other things)

while VASTOR beats bits.

1.10.3 Microcode loop conirol

The microcontroller has elementary looping ability: a

1

counter (UCTR, pronounced microcounter) loaded by the micro-

processor is decremented by a special microword field, at
which point a new ROM address is obtained from ROMADD[27 -
another byte of 2-port memory - or, if the counter reaches

-1, a new operation is started.



The main advantage of UCTR is that fields of bits may

be dealt with by a single microprocessor commana: UCTR can

be made to modify the address ussd for WK (the VASTOR word

memory) .

UCTR 1s 8 bits wide, andi loops may therefore be exe-

cuted between 1 and 100 (hex, remember) times.

The microcontroller also has a type of data-dependent
branch according to the approximate number of responders
(1's in RR). Table 1 shows the relationship between condi-
tion code and number of reponders: each nmicroword may test
this code against a reference, and branch to either of two

places according as the condition is or is not less than the

referance.

Table 1.

Branch conditions

code meaning
7 1/2 <= #RR
6 1/4 <= #RR < 1/2
5 1/8 <= #RR < 1/4
4 1/16<= #RR < 1/8
0 0 <= #RR < 1/16

where #RR is the fraction of RR's responding.



ROM actually contains pointers into ROMADD (part of the
2-port) which in turn gives new ROM addresses. ROMADD[ O] is
special, and just continues with the next line of microcode;
ROMADD[ 1] is special in that execution starts there; and re-
ference to ROMADD[ 2] has the side-effect of decrementing

UCTR, which in turn may cause an exit if UCTR goes negative,

ROMADD has a few normal addresses: 3 to 15.

1.10.4 WK addressing

Figure 4 shows how we generate addresses for working
store (WK): each ROM word has a 2-bit pointer into two more
areas of 2-port, which we call BASES and DIR. The address
produced at any iteration is BASES[ I]+DIR[ I]*UCTR, where DIR
may be -1,0, or 1. This allows an algorithm to work across
fields either MSB (most significant bit) or LSB (least sig-

nificant bit) first or to repeatedly refer to the same bit.

1.10.5 I/0

The A-bus may take data eithsr from the main scalar ma-
chine via a direct memory access channel or from the micro-
processor. Data on the A-bus may either go to the scalar
machine '(again by DMA) or be fed one bit at a time into the

‘constant' line.
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1.11  DROPOSED MLCROPROCESSOR

The microprocassor of figure 3 szrves to translate the
comuands of the scalar machine into sequeaces of starting
addresses and the like, This function may also be performed
in software on  the scalar machine, leaving the distinction

betwean machines metaphysical, if the extra transactions to

the 2-port a@enory may be grafted onto it,

Very little of this software is written, (that little
docnmented in chapter 2) but we expect that such functions
as allocating fields to variables and dealing with datatype
proparties (like preoper sign  extznsion for integ@rs)‘will

appear here.



Chapter II

FORTRAN INTERFACE ROUTINES

These routines are providszd to allow FORTRAN program-
mers to use VASTOR on the 11/3u4. They are a mixture of mi-

croprocessor and scalar machine level routines.

The following sections describe the calling protocols

for these routines. Sone types of argument recur and so are

explained here,

"RHO' 1s the length of a DMA transfer, and therefore of
a vector. PRoutines that +transfer bytes of data use it to
count the number thereof.

'WIDTH' is often wused as the starting value for UCTR,
and should be set to on2 less than the width of the data
fields for such operations as adding vectors.

Arguments like 'SRC' and 'DST' refer to LSB's or MSB's
(according to ths algorithm in use) of fields of data.
Since words are 1K bits, SRC and DST may conceivably range

over O0-3FF,



2.1 CALL IEN G SH()

This call results in the contents of SH being copied
into the input enabling vector. Remenber that TIEN will af-
fect almost all other operations, and so should be set ap-

propriately befors wusing them. Most routines do not have

the brains to set or change IEN.

2.2 CALL OEN G SH ()

192}

This routine 1is to the output enabling vector as its
predecessor to IEN, OEN must be set for any operation in-

volvimwg 'STORE's,

2.3 CALL XFRS( RHO, DATA)
RHO/8 elements of vector DATA are moved to SH from the
11/34. Zach byte of DATA goes to fill a phrase, with its

LSB in the first word (recall that SH defines the order) .

2.4 CALL XFRV( RHO, DATA)

This operation is the converse of XFRS: RHO/8 bytes of

data from SH appear in FORTRAN vector DATA.

2.5  CALL BOO R( SRC)
This reads a boolean vector (i.e. a single bit/word)

from WK address SRC into SH.



2.6  CALL BOO W ( DST)
This is inverse to BOO R: a boolean is written from SH

to WK[;DST]. IEN and OEN must be set for this to work,

2.7  CALL F AND( WIDTH, SRC1, SRC2, DST)
This routine perfornms bit-by-bit logical *AND' and
places the result in DST. IEN and OEN must be set. Algorithm

is LSB-last, so give the LSB location.

2.8  CALL F OR( WIDTH, SRC1, SRC2, DST)

This is the 'OR' analogue of F AND.

2.9 CALL F EQU( WIDTH, SRC1, SRC2, DST)
This tests for equivalence (inverted exclusive or)

after the fashion of F AND.

2.10  CALL F NOT( WIDTH, SRC, DST)
This logically inverts fi=1d 'SRC' angd places the re-
sult in DST. IEN and OEN must be set., Algorithm is LSB-

last,

2.171  CALL XFR B S( RHO, DAT

=g

» SRC)

This performs the rather convoluted byte-oriented I/0
touched on in chapter 1. RHO bytes of DATA are moved. from
the scalar machine to field 'SRC', LSB last. TEN must be

set. If you wish to do non-associative things, be warned



that DATA is permuted a little on the way in: because bytes
are written to successive phrases, a 10 long vector would go

into words 0,8,19,2,3,4,5,6,7 of a 2-phrase machine.

2,12 CALL XFR BV{ RHO, DATA, SRC)

This is the inverse of XFR BS. DATA is again permuted,

such that they are inverse in this too.

2.13  CALL VPV ( WIDTH, SRCA,

SRCB,SRC C IN, DST)

This performs element-by-element addition of SRCA and
SRCB into DST, using SRC C IN as carry-in and as a temporary
for carry between stages. IEN and OEN must be set. Algor-
ithm is MSB-last (backwards from XFR BS etc., so remember to
add WIDTH-1 to SRC A, SRC B and DST) . SRC C IN ought to be

a zero vector if you don't want a carry-in, of course.

2,74 CALL SH G LRG( WIDTH, SRC, TEMNP)
This routine puts the largest number found in the vec-
tor SRC into SH so that it car be read by operations such as

XFRV. This is an LSB-last operation.



Chapter III
APL
Three APL workspaces evolved during the design of VaA-
STOR: SINMULA, EMI and ROMVAS. The first of these is now
outdated, and was a simulator for hardware that now exists.
It was used for early systen architecture development, and
eventually able to 1load and ada 10-length vectors of 8-bit
integers, The latter feat took about 10 seconds of CPU

time, so developmant since then has been done on real hard-

ware,

EMU was the next to be written, and drove the PDP-11/34
as a smart modem to allow control of the hardware down to
the phasing of individual clocks., A simple-minded controller

(described in chapter 5) allowed a DR11-C on the 11/34 to

drive backplane wires.

ROMVAS has much in common with EMU, but wuses its low-
level functions to transfer microcode developed with EMU's
debugging facilities to a FORTRAN programme running on the

11/34, from whence it could eventually be copied to real

PROMSs,



Both ENMU and ROMVAS can be induced to call on FORTRAN

in the 11/34 to execute a given piece of its version of mi-

crocode, rather than APL's,

Most functions and variables ip the APL workspaces have
underscores somewhere in their hames, so that one may work

with medium impunity by avoiding them.

ENU and ROMVAS contain several groups (APL sense): REA-
DONLY, SIMULATOR and TRANSFER. These names are more histor-
ical than reasonable. The functions of the various groups

are described below.

3.1 READONLY

The functions in this group are identical in the two
workspaces: the workspaces are differentiated by the beha-

viour of a small number of functions called by then.

This function is a degenerate simulation of the micro-
processor. It has sections corresponding to most of the

FORTRAN routines described in chapter 2,

Table 2 gives the opcodes UP expects for the various
functions to be performed. UP takes a single right argument

consisting of a vector of opcodes followed by the arguments



appropriate to them. RHO is a global variable used by U

iro

for the same functions as RHO in the FORTRAN routines. U

g

is not particularly bright about WIDTH, and in fact special-

ised thoroughly to bytes,

Table 2.
UP codes
T 1
| |
| ]
] opcode FORTRAN order of arguments ]
i subroutines ]
| |
L Jd
I ]
I |
| 1 VPV SRC A, SRC B, SRC C IN, DST |
| 2 XFRS DATA 1
I 3 XFRBS DST, DATA |
| 4 XFRYV - {
| 5 XFRBV SRC I
| 6 IEN G SH - i
| 7 OEN G SH - I
] 3 BOOW DST |
| 9 BOOR SRC !
! 10 SHG LRG SRC, TEMP, 6 ]
| 10 MRK LRG SRC, TFEMP, 0 (not yet in FORTRAN) |
| 11 - s2t RHO to argument |
| 4 |
L = J

Figure 5 is an APL listing of UP. Our apologies,
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(16) LACr-0 w In

I=VISTRINC-LISTRINC & STHRING-1JSTRING

t4 22 3 nou
T ¥ FOUADD~ 24 25
u

i B=pCTES ¥ ¢ ENTATHE XPRO' ¥ ROV
X 'DO STORES' ¥ pox

Tt 21 (5 SHiEDyAnn Y (27
DIAUSNCD w = XFUNSLP
=UISTHING w0 XERry)
(4D~ 30002

(s DMaTos

ATOS~2 0 & =rPaiuSF

{24} >ffu&'(1/w-VA‘( BoSHeriec-T1 8 BASES=VISTRINC=1ISTRING
[20)  STRINC=}-STHING & DI,

MECIECA L) ptrule T

27} La70-0 & L vanne 34 85 5 pera=T K ' SHIFT €5' % noy
[25)  *ursn sue

E20) POVADD= Y6 3K % UCTH~CIRS{SHCCIRC]) & HOY % ~XFROVIP
(0] NUUPTTICHATON 8 DMATOS=(0O ¥ =pans
[0 7FAIONAD- 0 10 & UCTR0 ¥ LAGESD X *TEMY K ROM % STHINC-1 ISTHING
2]  =ranst

(Y] oumipeann= 41 41 ® UCTH=0 & pAGH
{ 14) ~I'ARSKE

[3S] MOOWIPASES~VISTRING- LISTREING % STRING~1ISTRING X HOWADD- 42 42 X LASE~O
P eorn-n & SHoow' B KOW K =PARSE

[I7] BoGEIASEN-V{SPRINC= LISTRING 8 STRING- LISTRING % HOVADD- 44 44 & PAZESO
(O8] UCTE-0 8 SHOK' & RO @ =[ANSE

E ] LA Ry TIHASOS=DISTHING=1 STV ING 8 STRING=2ISTRING & JAGE~L ¥ SHCCIRCS?
Taa]  wowabn- 0§ 4, 1ISTIING & STRING-LISTHING

(41) DI~ U 0 8 LCTH-T B 'LARCESTY B HQVY N =PANSE

[42) ROP:T0U0=-STEING] V) WIDTU-STIINGLZ] & SITRING-JISTUING & =~PARSE
A HAESUIRUSLT X STRINC-UISTHING 3 =PARSE

[44) FukipQuans= 7 7 w PAGE=1 & UCTR-WIDIN X nas
T4S) NIre= 1 1 1 % E00W & SIRING=DISTRING % ~PARSE
{44) FANLIROVASD- 10 10 & P4 r—l B UCTUH="IOTH X YFIELD AND® .
UAT) BASOS-5THINGEE 2 D) & STRING-ALSTHING 2 DIr= 1 1 1 & ROM R <PAKSE
(48] FHQU:EQuADD- 5 113 & PAQL—I k. LVT("hID’N K YFIRLD Eout .
[49)  nAsLS-8VI8GE0 2 ) DI~ 1 1 1 » ROY B =PARSE

[SD] FHOT:IEOVADO= 16 Y6 R P4 g:—! & giigg—brnlucll ) 8 DIE- L Y p USTR-WIDTH

UerT.
Th~

#
e

X YOSNY B JIOM W STRING-1LSTRING

S=JISTRING=LISTRING ® *FIELD OR'

Figure S5: Listing of yp
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Each line of ROM (except the first) is in one-to-one
correspondence with a word of read-only memory in the puta-
tive controller., The first line just transfers control to
som2 piece of ROM, or to a function called GOROM described

later. Figure 6 is a listing of ROM.

APL functions are used as mnemonics for ROMN fields:

descriptions follow,

1. -> <loc t> <loc £> BLT <cond> 1is the conditional
branch instruction. A branch to ROMADD[ <loc t>i
will occur if the code for the approximate number
of responders 1is less than that specified by

<cond>. Otherwise control passes to ROMADD[<loc

£57.

2. CLOCKS <ARG> 1is responsible for doing all the work
requested by operations appearing before it on the
line, and for producing clocking signals. It also
reads a word back from VASTOR and stops everything
if an HCF condition has been raised (see section
'1.9). Its argqument tells it what to clock: there
are three things that you may clock, and the phas-
irg is also adjustable. CLOCKS 1 clocks the ICU; 2
clocks SH; 3 (2+1) clocks both simultaneously;.u
clocks LSR for LSRT; '1 7003' clocks the ICU, then
the SH while ICU clock stays high; 5 is 4+1; and

so forth.



o

sosti

U OF TO DKTO SHARP APL OT/JUN/LIDIB = PACH 6

WSID = 24190 LOMVAS ¢ SAVED  34.36430 07/JUM/1078

(1) ROMAND B ARHOUT 27 K6 0N # SHCCIRCC SHCCIRC & ~LCELGUPAGE)/PGLOCIPAGE)¢RONADD] D) B COROK % =0

v ooy
{2 REC RECONT O K CLOCKS 1
[EAD] i oo BreevrT 1w crocks \
(1] SHEORRCONT g CLOCES Y1 7003
(5] HiEQU 81 CONT 2 8 CLOCKS
(6] wrGLe 1 ow CLOCKS
t7) IRE WRKCONT ) W CLOCAS
[%) HREQU v 1XCONT 2w Crorns
tay HIAMG SUHCONT % CLOCES 1
{10 EXCONT 3 b CLOCKS o
f11) 2 4 CcLOCES
[12) 8

Lsn 0 & CLOZ
{13} torsen o1

2 PROY XPHSZ

[Yd) howor ) o SHNG DUAFNS w CLOCES 3 aXFIS2:

0 8 CLeCKES 0 X -LO0PER
161 016G CONST 1 8 CLOCKS 1

[17)  FRNOr NECONT B LSET 43 M CLOCKS 5 ALDCTR =77 FLROM XERBS2

t1s) suna AVAU R CLOCKNS 2

(30] Rye SHCONY B OLSHT 1 O % SUVEC o CLOCES
{20]) JONY ® CLOCKS 'L 7D0n?

{21} SHOCONT & CLUOCKS

{(22) tser 1 o (MAT N CLOCKS 4

(22} v s 1 1% CLOCES 0

[24) SU0i Al RS % CLOCLS 2 AXERPS2:

(25) ELARIC T 0 8 CLOCKS 0 X =-LOOLFER

(26)  SPFIN & LSRT © 0 8 CLOCES 4 REDCTR-TY FHON X
[27)  Suier SpCCYT & CLOCKLS 2 % ~Loor

[28) LsuT 0 0 & CLOCKS 4

(24) & SHCOONT & CLOCES | aXPRRSS:

{20 [ DX CLOCKS )

30} SYrrT SHCOYT & (CLOCKS 2 % ~LOO0RER
[a2) 0 9 CLOCKS 4 a "2 FROY XFRv2
{33] PSw oty & cLotks 0

[34)  Nvarns SUKCONT & CLOCKS O a XERV2:

135) 1 1 170 5 CLOCKS 0 ¥ ~npopru

5

=
5
5
r-3

BN IRBSA:

(36)  [Iw0P | % SHUIX B LSHT O 0 F SUMAT ¥ CLOCES 5 & =1 FHOV XFRDV2

{17)
Ead) 1807 1 0 B CLOCES 4 6 "2 Frovw X

{37} 1 1 & CLOCKS O
{40 SHECONT B CLOCKS 0 s X
(41) 1.0 % CLOCRS 0 ¥ -poor

(42)  TENG SHCONT & CILOCES 1 K =00
[A3) 0eye SHCONT 8 CLOCLS 1 X ~L 00

[a4)  nRG SHCONT K. CLUCES § 6 BOOLLAN «RITH
(45 wWacRe 0 ¥ CLOCKS 1 & ~fonperp

{an) a
(17} n

U451 n THIS SIPACE LEFT FOH EASY EXPANSTON OF

[4) a
[50)  SHFIX K SEVEC ¥ PRC COVST 1 X CLOCKS |

A IFN:
SHCONT 8 CLOCLS 1 % ~LOGIHCR A OEN:

SULEY WECONT 0 B CLuCuS 2 8 =100P51 aXFIev2:

BECOMT 0 5 CLOCES 2 & =LUQPER & DOOLEAN READ

PAGE D OF ROX

a 1 PROM “LARCEST™

[S1] WEGRR 1 8 CLOCES | a “LANGEST™:

1521 SUFIX ® ERHAND PECOVT O % CLOCKS 1 % = 3 0 UiT 4
LB3) SHTET 1, 0pSHCOYT X CLOCKES 2 X = 4 2 pLT 5

[S4)  suIrT UCONT & CLOCKS 2 aZIRU HESUONDERS
[SH)  Sureyx HKEC WECOVT 1 & CLOCKS 1 & =~[oyprin

{56) = A EXACTLY ONE RESPONDER

[57] s WoORHG WRZONT O % CLOCKS 1 aFIRLD oA

[6%) Egnu WECONT 1 o CLOCKS 1
LS9 wronn 2 ®» CLOCKS 1 B -l 00reEn

{60)  SUFIN & [KC WECONT O X CLOCKS 1 aFILLD AND

[61)  HERARND WECONT 1 8 CLOCKS )

{62} 2 K CLOCKS 1 g —LDDPER
[63) R OERG WEIONT O % CLOCKS | aFlELD LCQULY
[61) MNECONT L W CLOCKS 1 :

{65) 2B CLOCKES | & ~LOOPCH

[C6)  Surix p RECC WECONT O
(671 WEGRR 1 & CLOCKS | ¥ ~LOOPER
v (3040 HYTES)

LOCKS L aFIELD TKVERT

Figure 6: ROM listing



DMATOS <ARG> performs a DMA transfer from ARG to

the scalar machine. The only known valiad argument

is SHRCONT.

CONST <1 | O | ABUSPOP> drives the constant line

via the resistors to 'B' lines shown in figure 1.

Any other 'B' driver will override this input:

take care.
DMAFRS may be used to pass DMA data to SHRG.

IENG <SHCONT | WKCONT n | CONST n> loads IEN (the

input enabling vector) from the named source.

->LOOPER decrements UCTR: on becoming negative it

causes exit, and otherwise control passes to

ROMADD[ 2 7.

count LSRH O <0 | 1> shifts 'count' copies of the
second element of its right argument into LSR. It

does its own clocking, since LSR is faster than

anyone else,

LSRT 0 <0 | 1> sets all elements of LSR to the

second element of its rigﬁt argument, A '1' ena-
bles the 'A' bus side of all SHifters, so be sure
SH is pointed to 'B' if you do that. LSRt 0 0 is
a good way to start a function, since the last one

may have left LSR in a strange state., Setting LSR



10.

11.

12,

to zero gives you a better chance of getting along
well with the HCF logic, which recognizes this but

does not understand about ‘'one's being shifted off

the end,

OENG ARG 1s similar to IENG ARG, and sets the out-

put enabling vector,

PIAFRU is like DMAFRS, but gets data from the ni-

CIOpPIrocessor.

BR?7? <SHCONT | HKCONT n | CONST> is the general
form for a set of routines that operate on RR.
The form is RR <- RR <op> (DATA = IEN), though
some <op>'s are one and zero-dimensional degener-

ate.

a. RRAND: <op> is AND

b. RRANDC: <op> is .AND..NOT.

c. RREQU: <op> is equivalence (XNOR)
d. RRG: degenerate, RR <- DATA"IEN
e, RRGC: RR <- —~DATA"IEN

f. RRNOP: no-op. Used to ensure that the ICU
stops driving the 'B' 1lines in case previoﬁs

operation was a store of some kind.
g. RROR: <op> is .OR,
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13,

4.

15,

16.

17.

18.

19.

h. RRORC: <op> is .OR..NOT.

RRCONT does a STORE. It may only be used to store

into SH, since there is a special function to

store into WK.

RRCONTC may be used to store the complement of RR

into SH.

SHCONT points SH towards 'B'., It may be an arqu-
ment to RRG etcetera. RRNOP SHCONT is a popular

way to allow serial shift.

SHFTX points SH towards 'A' so as to free up 'B°t.

May fail on HCF.

SHG <HKCONT n | RRCONT | RRCONTC | CONST n> loads

SH from the 'B' linss.

SHIFT <O | 1 | SH255 | SHCONT | HKCONT n | RRCONT
| RRCONTC | CONST n> puts SH in serial mode. See

SHMODE and SHCCIRC to find out what happens on

clocking SH. The first three options for argu-

ments make sense when SHMODE 1is set by SHVEC, and

the rest when by SHMAT.

SHVEC sets SHMODE multiplexesr to make SH appear as

a 256-length vector,



20, SHMAT sets SHMODE nux so that SH is SHCCIRC rows

by 32 columns.

21. SHRCONT points the shifter to 'A' and parallel

mod=2. Can have HCF problens.

22. SHRG DMAFRS points the SHifter from 'A' to 'B!,
puts it in parallel mode, and requests a byte of

DMA data from the scalar machine.

23. SKZ causes all 1ICUs with RR=0 to skip their next

instructions.

24, WKCONT i: selects BASES[i] and DIR[i] to generate
an address for working store, points shifter to

'A', and enables WK to drive 'B' lines.

25, HWKGFR 1: selects BASES[1] and DIR[i] to generate a
WK address, points SH to 'A' to avoid destroying
its data, enables WK, and generates a 'STORE' op-
codz for the ICU. Only those words with OEN=1 will

be altered.

i

3.1.3  GOROM
This routinz gets «called instead of the appropriate
section of ROM if PGFLG[PAGE]=0 and starts the FORTRAN. ROM.

It uses some escape sequences described in chapter 4 to pass

startup information to the PDP-11 and expects DMA data from



VASTOR to be sent back together with prompts for DMA data to
VASTOR. After APL has s2nt an '$VG<cr>! (GO command, see
Ch. 4) it queues all hex numbers returned as data from VA-
STOR, and sends back ‘'microprocessor' or ‘'scalar machine!
data according as a 'P' or an 'M' occurs in the string. If
a 'quad! (upper case L) appears in the input stream GOROM
assumes that the FORTRAN controller has halted and awaits
the next command. Since we use APL on a half-duplex line,
it is necessary for FORTRAN on the PDP-11 to delay for a
little while after recieving a carriage return before send-
ing back any data. Control over this delay 4is afforded by
one of the escape sequences described in chapter 4. Refer

to programme listings in the appendices for more detail.

3.2 SIMUOLATOR

This group contains the functions used by routine ROM
described above. Most of these are the same for both works-
paces, and set and clear bits in APL's image of the current
word of read-only memory (array QUT). Chapter 4 lists the

assignment of bits in this version of ROM.

Some functions behave differently in the two works-

paces, though they are used in exactly the sanme way. The

folloving subsections describe the two versions.



3.2.1 EMD

B EZMU actually emits microcode when UP is given instruc-

from FORTRAN). The 300-baud serial transmission of micro-

words involved obviously makes VASTOR a little slow,

1. Function CLOCKS actually emits the microcode'built
up by the current line of ROM. It sends an '$VN!
sequence to FORTRAN followed by any microcode new
for this line and checks for HCF before sending an

'$VF' to turn VASTOR off and returning.

2. DMAFRS removes one item from the queue of DMA data

waiting to leave the scalar machine and returns it

to the calling function,

3. LOOPER decrements WUCTR (which APL keeps in this

workspace) and returns either the line number in

[122]

0¥ corresponding to ROMADD[ 1] (which corresponds

to ROMADD[2] in hardware) or zero according as

UCTR stays positive or goes negative,

jme]

4. LSRH in EMY generates its own clock, rather than
leaving it for CLOCKS, because the original design
provided for multiple LSR shifts in one microcy-

cle. It also emits the '6000'-series opcode (see

chapter U) corresponding to its argument,



5. PIAFRU is rather like DMAFRS, though it uses a

scalar data source rather than a queue,

6. A function called PLACE is used by functions 1like

HKCONT to generate working store addresses from

3.2.2 ROMVAS

ROMVAS will either start the FORTRAN ROM executing any
instruction requested by a call to UP or transfer that in-
struction from APL ROM to FORTRAN, according to the value of
PGFLG. Transfer 1is accomplished by letting functions like
RRAND build up microwords, and then having a special version

of CLOCKS use an escape saquence to transfer then.

1. CLOCKS in ROMVAS transfers APL's array QUT to the

appropriate line of the currently loaded page of

ROM in FORTRAN by using an '$VD' segquence.

2. DMAFRS simply returns the ASCII for an ‘'m', with
which FORTRAN should prompt APL (and the console)

for any DMA data nesded from the scalar machine.

3. LOOPER always returns a zero in ROMVAS, since
there is no point in actually 1looping when the
only objective is to +transfer microcods., It also

deposits an unconditional branch to ROMADD[ 2] in

the appropriate microword.



u, L3RH just puts its arguments into OUT and returns.

A
““““ ) 5. PIAFRY returns the ASCII for a 'p', again for FOR~
TRAN's use as a prompt,
6. PLACE returns its arqgument without any ado, be-
cause BASES and DIR are not available to ROMVAS.
N’
~



Chapter IV

ROM

This chapter contains: information about known micro-
code down to the bit 1level; details on how ‘microprocessor?!
progranmes gain access to known microcode; timing for exist-
ing routines; and +the FORTRAN implementation of ROM, which

is currently kept on disk.

4.1 CURRENT CONTROLLER

The current developmental controller uses a DR11-C
16-bit parallel interface, whose output is interpreted as a
b-bit address and 12 bits of data. Table 3 shows the func-
tions corresponding to various addresses on the DR11. Sche-

matics and the 1like for the simple controller may be found

in chapter 5.

VASTOR can return a 16-bit word containing output data

and such: table 4 shows what the subfields of this word

signify.

Two FORTRAN-callable subroutines exist to get and put

words to and from VASTOR: PUTVAS and GETVAS. See supplied

routines for examplass of their use.



Table 3.

Current controller opcodes

ADDRESS FIELD REMARKS

0 0 Reset ICU and controller when set

1 9-0 WK address

2 - reserved for CCD backing store

3 8 CONST input

6-U4 'B' data enable: 0 (default) -> SH
1 -> WK
2 =-> backing store
(future)

3 -> ICU

0 ICU opcode
4y 8 data for top of SH.
0 parallel data for 'A' of SH,
7 SHMODE: 0 -> SHVEC; 1 -> SHMAT
2 -> SHSENT

6-3 SHCCIRC
2 SH parallel loading when set
1 SH points from 'A' to 'B' when set
0 SH circulates when set, gets new
data otherwise.
6 4y LSR loops data when set
3 serial data for top of LSR.
2 load/shift (load when 1)
0 parallel data for LSR.
7 2 LSR clock
1 SH clock
0 ICU clock

. . e - o — . e Y. o0, e Tt Gt i o o o e e o

Table 5 lists entry points to ROM and timing informa-
tion for the various algorithms there, together with the
number'qf addresses worth of BASES and DIRection they ex-
pect. The FORTRAN routines of chapter 2 use this informa-

tion to set up common blocks which are then used by a rout-

ine called VARUN to run VASTOR programmes. Some of the

pieces of FOM ars hidden as components of larger chapter 2

op2rations, and so do not appear there.



Table 4,

i VASTOR output through the DR11
11 1
,,,,,,,, l !
| FIELD REMARKS |
[ F  HCF condition encountered |
| B-9 condition code out: #RR |
] 8 last element of SH ('B!' for last wvord) |
I 7-0 value on 'A' bus. |
| |
L. J
Table 5,
ROM addressing and timing
FORTRAN UPcode ROMADD ¥ of TIMING 1in cycles
name 1T 2 3 4 BASES setup per loop
page 0
VPV 1 o o0 - - 4y - A
XFRS 2 A C - - - 2 2
- XFRBS 3
LDAPT E16 - - - 8 2
MATROT i6 17 - - - 1 1
MATSTR 14 1B - - 1 1 3
XFRV 4 iD 20 - - - 2 2
XFRBV 5
MATRD 22 23 - - 1 1 1
XFRV (4) 1D 20 - - - 2 2
TENGSH 6 28 28 - - - - 1
OENGSH 7 29 29 -~ - - - 1
BOOW 8 2A 228 - - 1 - 2
BOOR 9 2C 2¢ - - 1 - 1
page 1
****** SHGLRG ' A 0 1 4 6 2 1 3 or &
FOR D 77 - - 3 - 3
FAND 3 A A - - 3 - 3
FEQU F D D - - 3 - 3
FNOT 10 10 10 - - 2 - 3
4.3  FORTRAN DEVELOPMENT SYSTEM
~



R FORTRAN programme called ‘'UPVAS! (nicroprocessor for
VASTOR) existing on CGPACK 3 (property of WML) is designed
for use with the apPL development system, VASTOR and its ru-
dimentary controller, and the Hazeltine 1500 terminal. The
11/34 usually runs as an overpriced modem cable, but nay be
ordered to simulate the proposed controller, perform some
microprocessor functions, edit microcode, and do various

housekeeping tasks described below.

A disk file called VASTOR.ROM on CGPAbKB contains 10
pages of FORTRAN ROM with 50 microwords in each page. Of
these only one is loaded 4into core at any time, and most
commands refer to that one. Columns of UPVAS array ROM cor-
Tespond to the opcodes of table 3 above, except that some
functions must be done by FORTRAN: thus UPVAS must get DMA
data from APL or the console in order to produce data for
opcode 4, and must compute addresses for working store angd
for branches. Table 6 shows differences between ROM for UP-
VAS and the opcodes of table 3, while figure 7 is a complete

listing of ROM as of June 1978.

This programme may also be used without benefit of APL
to run existing microcode or debug at the bit level by hand.

The main thing lost thereby is symbolic microcode.

Since the routine is intended for use with an ASCIT

character set terminal and APL, it performs some rather odd



Table 6,

TPVAS ROM opcodes

ADDRESS FIELD REMARKS
1 1-0 index into BASES and DIRection
4 A request DMA data from scalar
machine or microprocessor.
7-0 An ASCII character wherewith to
prompt APL if bit 'A' is set.
5 A Transfer DMA data to scalar
machine.
6 9-5 Count for clocking LSR.
7 6-3 Second phase of clocks.
8 B-8 test condition for BLT,
7-4 index into ROMADD if success.
3-0 " " " " failure,

character translations to make +he output read like APL,
Most of this 1s fairly straightforward, but the user should
note that the terminal cannot print overstruck characters:
we therefore show these by printing the characters to be ov-

erprinted one above another, Experiment with it for more de-

tail,

We list below the escap=z sequences understood by UPVAS
at the moment, A1l of these start with an ASCII 'escape!
(or 'altmode') character, which is echoed as '$!'. The let-
ters foylowing the escape must be upper case and will not be
echoad. Either APL or the terminal may enter any of these
sequences., The two or three characters of the sequence must

all come from the same source.
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'$%' (escape escape) transmits an escape character

to APL,

'3E (END) terminates programme and returns to
RT-11., This 1is the only software way to finish.
'Control-C' will pnot work. This was done to allow

transparency for use with the PDP-10.

'$M' (maintenance) puts/removes the Teletype logi-
cally in/from parallel with +the glass terminal so
that hardcopy may be obtained/suppressed. This is
a toggle function. This feature is also useful

when debugging VASTOR hardware.

'$5P' (parity) may be followed by 'E?, '0', *1' or
'0' to force transmitted data to have even, odd,

mark or space parity respectively. Default is

teven' and should be fine,

1$st (set escape character) may be followed by a
new escave character, although one of the two par-

ity versions of 'escape' will still work. This

feature interacts oddly with parity.

i

'$Vx' is a series of VASTOR escapes. The options

for character 'x' are detailed below.

Several of these sequences take lists of num-

eric arguments: in all cases numbers are in



2's-complement 16-bit (4 digit) hexadecimal and
delimited by blanks or other non-numeric charac-
ters., Where a 1list is required it may be termi-

nated by an 'SVF' or any other wvalid '$Vx' se-

quence,

Everything after the 'x' 4is transmitted +to

APL, which may sometimes produce confusing phe-

nomena.

a. '5VB' (bases) *ells the simulated controller
what values of 'bases' and 'directions' to
use for the next time ROM is used. BAlternate
'base! values with their corresponding

‘directions?',

b. '$VC' (counters) is to be followed by values

for UCTR, SHCCIRC and a list of ROMADD's.

C. '$VD' (deposit) deposits hex data into the
currant page of simulated BROM. Give row num-
ber, column number and then value. Arbitrar-

ily many triplss may be entered.

d. '$VE' (examin2) examines the contents of the
current page of simulated ROM. Type row and
column number and it will respond with the
contents, Arbitrarily many locations may be

examined,



‘3VE?Y (off) will return from the current

'$Vx' state to the modem state.

'$VG' (go) starts the simulated microcontrol-
ler executing according to +the most recent
values for '$VB' '$VC' and 'S$VR'. It will
start at the next carriage return after the
'G', and an 'I' or an 'L' may be typed first,
in which case the controller single-steps by

instruction or by loop (resp.).

"$VL' (list) lists the «current page of ROM’
ten rows at a time either on the glass termi-
nal or TTY according to the state of '$M',
The next ten lines may be made to appear by

typing any character,

'$VYM' (VASTOR maintenance) is to be followed
by two numbers. The first may be 0, 1, 2 or 3
to get different 1levels of maintenance out-
put: 0 for compatibility with APL workspaces
EMJ  and ROMVAS with minimum noise; 1 for
listing of issued microcode; 2 for microcode
and extra GETVASTOR's to allow inspection of
device state; and 3 for no noise at all
(vhich is incompatible with the workspaces).
The s=2cond number is a delay (approximately

in milliseconds) necessary to comnunicate

- 40 -



with half-duplex APL without losing data.
Good values are 300 (hex, default) if APL is

running things and 0 (hex) if FORTRAN.

'$YN' (on) allows immadiate input of micro-
code and ignores ROMN completely, This_is the
mode used by APL workspace EMU for microcode
development and is also useful to force re-

sets by hand and the like.

'$VP' (proceed) continues processing from a
single-step halt in '$VG' or earlier '$VP'.
Like '$VG' it may be followed by 'I' or 'Lt

and should be followed by a carriage return.

"$VR' (read) reads the page of ROM specified

by the following number into core.

rgvue (microprocessing) does for the 11/34
what P does in APL: executes higher-level
instructions specified by the following vec-
tor of numbers. Be warned that these are hex-
adecimal and those in APL usually base ten.

Refer to table 5 for the 'upcodes?.

TEVW? (write) is the inverse of '$VR' and
writes the core page of ROM out to disk at a
page number to bs given after the 'W'. Remenm-

ber to get out quickly with '$vrr,



Chapter V

HARDWARE
This chapter gives details on the layout of the VASTOR
board, the developmental controller, the proposed control-

ler, and a section on miscellany.

5.1 VASTOR BOARD

Figure 8 describes the layout of a single word of Va-
STOR of which there are 16 on each board. Of interest in
this diagram is the presence of BK (i.e. the backing store)
which although as yet undefined has sockets placed on the
prototype board for future development. A second point of
interest in this figure is that the ICU clock accepts in-
structions on the rising 2dge and produces results on the

falling edge of the clock.
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Figure 8:

Schematic for One Word of VLSTOR

Figure 9 illustrates the layout of the collection of

words called

layout of the multiplexers driven by SHMODE. ©Note that ‘he

shifter performs the shift/load operation

tive node.

a phrasse,

0f interest

on this diagram

is the

1

‘in a level sensi-



8 Lol s

of

VASTOR 1w __ L

1372

SHECIR $E:1)
/50696

kS VQ (iw.r (’u.r_’\
OLN-{:‘ [N 1":»«:0! N A

Tee ocwdpud of Siice s S#rHopE
SH vao Q—» e o'}’}«‘z/\.'
'p\.sr\;: s,

C4£FV§AVQ

A ey o 3N
Previous
p!\rag\n

]

L/o NCxr
PArzse

Figure 9: Schematic for One Phrase of VASTOR

Figure 10 illustrates how the ©phrases are intercon-
necteld tg form a sentenca. Not2 that the LSR is actually &
bits long while +the description and use only needs 2 bits.
The reasons for this are historical as at one time 2 bhits of
inforration were believed useful per phrase. This facility

has been left in a disabled form so that future changes are

possible,
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5.2 DEVELOPMENTAL CONTROLLER

- e i e e e S S s e st o o . o S o S

The developmental controller described in this section
is based on the prototype and assune familiarity with the
previous discussions with respect to PDP~11/34 interface.

Figure 12 shows the base for the controller: it decodes
4 bits from the DR11 into an opcode and produces a clock
pulse for data latches. This diagram also shows the reset
circuitry, which corresponds to opcode '0O', A UNIBUS 'INIT'
forces the controller into the reset state. This requires
that the first instruction from the PDP-11 be a ‘clear re-
set' op-code. RESET clears most data registers as well as

resetting all VASTOR ICU's,
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Figures 1
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elsewhare, of
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CODES 8 and 9 a

Controller Instruction Decoding and Reset

3 - 18 illustrate the circuit required to
cessary actions for the op-codes described
particular note is the chain of actions pro-
alt and Catch Fire circuitry. In Figure 14 a

SH to drive the 'B' bus disables ICU OP-

nd prevaents other sources from being given a

Chip Select. In Figure 16 the A/B request 1line is altered

for those cases where more than one SH may be attempting to
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Figure 20 shows the circuitry used to derive the value

e which is to h2 read into the PDP-11/34,
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Figure 21 shows the IC layout for the developmental

. controller.
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5.3 PROPOSED CONTROLLER

The proposed controller structure is diagrammed in fig-
ure 22. It uses the DR11-C output lines as a simulation of
a microprocessor bus: 8 bits of data and 8 bits of address
plus two address-like bits from the DR11 control word. The
control word bits specify whether VASTOR is to run, control
store be loaded, or high-order address bits for control

store loaded (address bits being scarce).

Control store (rseferr=2d4 to as ROM in simulation)‘has at
least one writeable page, and is expected +to reside on a
board separate from the rest of the controller. Table 7
shows the assignment of functions to bit fields in control

store.

Two-port memory is implemented as 512 8-bit words fron
the DR11's point of view and as 256 16~bit words to the con-
troller. The actual memories are conventional (e.g. 9111 or
9112) 200ns RAM's whose address lines are multiplexed bet-
ween the two sources. 'Writes' all come from the DR11 and
'reads' all come from the controller, which simplifies mul-

tiplexing.

The DR11 and con“roller both see two-port nmemory di-
vided into 16 pages, each a separate task. At any time the
DR11 should be writing into one page while the controller

reads from another: the choice of pages for both functions
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Table 7,

Control store bit assignments

Field Function
0 first phase ICU clock.
1 first phase SH clock.
=2 second phase ICU and SH clocks.
4 Txx: 'xx' is parallsl data for LSR.
Oxy: 'x' sets mux. to connect LSR as
loop or shift register. )
'y' is data in if LSR is a shift
register.
bit 6 itself goes to P/S of LSR.
8-7 number of clock pulses for LSR.,
bit 8 probably surplus,

B request DMA to scalar machine.
D-C SHMODE mux. drive.
E A/B (on SH) drive.
F P/S (on SH) drive.
11-10 Ox: no-op.
1x: request DMA from scalar
10: DMA for DMAFRS,
11: DMA for PIAFRU.
15-12 ICU opcode drive
16 CONST
17 0: selects CONST to drive SHTOP
-and the 'B' line resistors.
1: selects SH255 for above functions.,
19-18 'B' line enables
CO: SH
01: WK
10: BK
11: RR
1C-12 index for BASES and DIR
top bit redundant so far.
1F-1D test condition for ROMADD generation.
23-20 new ROMADD index on .true.
27-2u " " " " .false,

is made by the 11/34, which is also responsible for synchro-
nisation. Five of the 8 available address bits (on the
DR11) are used to specify an 8 bit word in two-port memory,
while the top three bits select whether two-port, control

information, or DMA data are to be written. Table 8 shows

- 857 -



the assignment of functions to the two control bits

three high-order address bits.

Control bits

—— —— ———— — . a7 oo

)
01
10
kR

010

011
Txx

Table 8,

Address space utilization

e i s e i i, Ao e . A W S . i v

Run: normal controller activity

Write to control store

reserved

load high-order bits of control store
address for a following write

two-port

8-bit register containing two two-port
page numbers: one used for reads,
the other for writes.

register containing DMA data from the

11/34. Both DMAFRS and PIAFRY go here.

start VASTOR command.
reserved.

and

The controller cycles through four major states (cf.

figure 23)

for evé;y microword and one to get a new task started.

in running VASTOR., Three of these are executed

The following subsections describe the two-port in more

detail and each of the four controller states.
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Address generation for two-port memory is detailed in

figure 24,

5.3.2  State g0

This state 1is needed only once per task, and on exit
should leave UCTR, SHCCIRC and the RON page number correct,
Figure 25 shows the latch into which these are loaded from
the current (read) page of two-port, and figure 24 above

described the necessary address generation.

This state should leave the WK address correct on exit,
and therefore fetches BASES and DIRections. Figure 26 gives

details,

5.3.4  State g2

This state allows the DR11 access to two-port and VA-
STOR control while a VASTOR instruction runs. Figure 27
shows how DR11 access to two-port and VASTOR control func-
tions is synchronized to state @2, Several 'writes' could

theoretically happen in a single instance of this state, but

the controller does no 'read's,

The measured condition code is assumed to have settled

on exit,.
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Figure 28 shows five substates of this major state.
Tvo-port uritez are indep=ndent of these, which perform the

tasks stated in the figure.

Figure 29 shows how two phases of ICU and SH clocks are
genarated in @2, and how LSR's clock 1s produced. This ver-

sion cannot produce multiple LSR clocks.

Figure 30 shouws DHA d2tails and SH control. Note that
it definé&s the layout of the DR11 input word, which gives
the 11/3% enough information to do DHA. This word is simi-
lar to that in the existing controller except for the addi-
tion of two bits vhich specify the +type of interrupt re-

quast.



lo-bits
{\ro m R -?0;27
A

}L“}s

-6 ’

bids,
) c([')—-S’

¢, T” Bhsc J} $, ~jrnDIF

AR g
ye

(-
g vV 1 EfsES +/Lc?k
T o Brses
) Gases T paTR
0

\\,,___._..,___\__',
Wr/ ek

A c C! e s

N
~n

Figure 26: State g1 oparation

. b1 -xfon
DI s tars 3 - :"”- F/pﬂd*r’(' R P—
§ omfo | )—“ e fo DRI enchiz
rop

\,\) g nex J~L5

, Figure 27: ¢2: Enable DRi1 writes

Figure 31 shows drivers for the ICU,. 'B' line

and SHifter input data generation.
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tate 4¢3

Figure 32 shovs logic associated with state g3, which
is responsible for stepping to the

next microinstruction.
This may involve two-port

access (for ROMADD), decrementing

UCTR, or'causing the current task to halt.

The bit labelled s' in figure 32 is used to halt a

task, When it 1is clear, all ROM accesses are to location 0
because the value produced for

ROMADD is cleared. Location
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0 of each page of ROM should therefore contazin a no-op with
an unconditional branch to ROHADD[1]. The DR11 nay set this
bit only in state g2, and another bit is4copied from this
one on-entry to state g1 to allow that state +to be skipped

when an instruction is running.
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5.4 HISCTILANY
Tables 9 a

nd 10 give pin essignments for +the VASTOR
backplane. The boards used are VECTOR number 4350 with an

80~-pin connector to fit R680 sockets. Numbers are as shown

on the board: a variety of sockets exists with another num-

bering schene,

1
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Table 9,

vvvvvvvv -’ Backplane pin assignments
pin # signal
1 ground
3 CCD clock phase 1
5 " " 1" 3
7 extender board word 0
9 1
11 2
13 3
15 u
17 5
19 6
21 7
23 SHMODE bit 0
25 1
27 2
29 LSR parallel data, bit 0
31 1 (reserved)
33 LSR clock
35 LSR parallel/serial
' 37 SHifter clock
B 39 SHifter P/S
41 SHifter A/B
43 -
N’ L5 _
u7 -
49 -
51 -
53 LSR serial data in
55 LSR serial data out
57 SHifter serial data in
59 SHifter serial data out
61 extender board word 8 (word 0 of phrase 1)
63 9
65 10
67 11
69 12
71 13
73 14
75 15
77 -5 volt supply
o 79 ground
N

..69_



DN Er

10

14
16
18
20
22
24
26
28
30
32
34
36
38
40
4?2
4y
46
48
50
52
54
56
58
60
62
64
66
68
70

72

Tu
76
78
80

Table 10.

Backplane continued

signal

+5 volt supply
CCD clock phas= 2
CCD clock phase 4
reset

ICU opcode bit 0
1
2
3
'B' line pullup resistor reference
'fuzzy plus' summing line.
ICU clock
SHCCIRC bit 0
1
2
3

'A' bus, bit O (LSBI)

NN E W N -

WK/BK address bit

WD NOUL W - O

WK enable low
BK enable high
+12 volt supply
+5 volt supply
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Chapter VI

CONCLUSIONS

This chapter discusses possible changes to VASTOR, the

things it is known to 4o badly, and some things we hope it

will do well.

6.1  WHERE TO GO

The 'proposed <controller' and several more boards of
VASTOR words are needed before the device is 'economic!' for
anything at all on the ©PDP-11. The 'microprocessor' of

Chapter 1 should remain a software fiction until more is

known about it,

'Extender boards' have been considered for attaching

VASTOR to special hardware and for accelerating important

functions that overpower ICU's.

1. VASTOR could be seen as a front end for mass sto-
rage devices e.g. disk) with each word corres-
ponding to a diffsrent area (or unit). This re-
éults in the best efficiency when many units are
accessible at one time, Data could either be pro-

cessed as 1t came off the (e.g.) disk or moved



into backing or working stores for more cogita-

tion.

2. Telephone exchanges have been suggested as an ex-

ample of an application for a little special con-

trol hardware per VASTOR word.

3. One function that might be worth accelerating is

an exact '+/' (summing a bit fielgd, perhaps of

length 1, over all words) .

4, A way of finding the ‘'first' marked word may be
useful in associative sorts, searches, matches et-

cetera. This is fairly cheap to do.

W/ Alternatives to the ICU as processing element have been

considered, of which one is faithful to VASTOR's bit orien-

tation and one not.

1. A more conventional 4-bit slice would offer faster
processing for two reasons: firstly because bipo-
lar speeds are available and secondly because of

‘the inherent parallelism of the slice size. This

greatly increases the processing cost per word.

2. An interesting way to stay at the bit level is to
use RAM for processing as well as for storage.,
This processing RAM would be a separate chip whose

address lines are derived fron the data lines of



storage RAM. This implements arbitrary truth ta-
bles directly. One function that stands to profit
is '+', because this is tedious with the ICU's in-
struction set., The main cost is the 1loss of
'0EN', whose selective write-back capacity is use-
ful enough that it would have to be duplicated ex-
ternally. ROM could be used instead of RAM for

processing, but a developmental machine should use

RAM.

6.2  LIMITATIONS OF VASTOR
Algorithms which involve random shuffles of data among
words are slow because of the limited backplane bandwidth

available, They may be implemented in roughly the sanme way

as sorting.

Difficulty with I/0 transfers seem +to be inherent in
the machines associative structure, though VASTOR makes rea-

sonable use of available bandwidth for this.

Thg ICU's microsecond cycle time and limited instruc-
tion set make VASTOR do arithmetic slowly relative to a more
conventional machine, for which 'add' at least is somewhat
optimized. Arithmetic looks better on VASTOR when unﬁsual
field sizes (e.g. 33 bits) are desired, and when a good num-

ber of VASTOR boards exist.



6.3  APPLICATIONS

VASTOR was originally thought of as an inexpensive ma-
chine with some architectural relation to APL by virtue of
its vector orientation, This means that its suitability for
a particular application can be understood in terms of the

operators required for that application and those +that VA-

STOR handles well.

The machine could probably be used advantageously as a
text store when associative lookup is required, as for edit-
ing or symbol table uses. Some database management func-

tions fall under this heading.

One application discussed for extender boards for VA-
STOR is telephone line monitoring. Each word could have one
or a few telephone line interfaces (tone decoders etc.) to
monitor and accumulate data on for later attention by a con-

ventional processor.



