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Abstract

Three adaptive linearization schemes are proposed in this
papexr. In the first scheme, linearizadon is performed by canceling
nonlinearity at the output of a physical system. In the second
scheme, a nonlinear post-processor is employed to post-distort sig-
nals, while in the third scheme, 2 pre-processor is used. In these
schemes, necessary estimates of linear and nonlinear operators are
provided by adapdve linear and nonlinear filters., Encouraging
results have been observed in the simulations.
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L Introduction

System linearity is desired in many applications where non-
linearites exist. Thus it is necessary to cancel out or reduce the
nonlinearides in the system. Following are some applications
where linearization should be employed:
*) In integrated filters, a resistor should be repiaced by a transistor,
which has reasonably good linearity at smail signals, to fully
integrate continuous-time filters. However, a transistor presents
intolerable nonlinearity at large signal swings (8](9].
*) In optical communication, distortions caused by the nonlineari-
des in the analog drive circuiry and LED or laser should be
reduced to satsfy distortion requirements [10].
*) A loudspeaker has several major sources of nonlinearity, includ-
ing non-uniform magnetic ficld and nonlinear suspension system
{6](7]. Nonlinear distortion is often a few percent of the output sig-
nal, and it is very desirable to reduce it.
*) A critcal issue in bandwidth-efficient QAM in digital
microwave radio systems is nonlinearity of the high-power
amplifier in a satellite. Adaptive predistortion techniques have
been proposed to compensate the nonlinear distortion {11)[12]

There are some drawbacks with the existng linearization
approaches. Most of the linearizaton methods for integrated
continuous-time filters require device marching. This matching can
only be satisfied to a certain degree because of manufacturing
fluctuations. Feedback technique has difficultes linearizing a
loudspeaker system because-of a delay involved in the feedback
path. Most of the existing methods, except for some of those for
linearization of satellite channeis, rely on fixed circuits or devices,
thus their performance will be degraded by aging, temperanure, and
an ever-changing environment.

Adaptive approaches may provide a good solution for some
apphcauons An approach for adaptive linearization was pmposed
in [1] for systems described by state-space equations. However, it
is only applicable to the class of systems where cancellation of the
internal feedback can be performed physically. This paper intro-
duces three new adaptive linearization schemes, and each of them
may have its own applications.

2. Adaptive FIR Filters and Volterra Series
This section reviews the principles of adaptive linear and
noanlinear FIR filters and the Voliterra series. These principles will
be used later in this paper. An adaptive linear FIR filter has the
following form (2]
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4 the impuise response, or coefficients of the filter.

Using the LMS algorithm, we can update the coefficients
according to {2]
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where p is the step size and e is the error, defined as the difference
between the reference signal and the filter output.
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filters and the adaptve linearization schemes proposed in this
paper. For a nonlinear system satisfying certain conditions, the
output y (k) can be expanded into a Volterra series :
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sum with A, can be considered as a convoiution of the input signal,
u(k), with the impulse response, 4,(k), of a linear system. This
sum is a linear term. The sum with k; will be referred t0 as ith
power term, since if the input u(k) is multplied by a scalar o, this
term will yield a factor of. Particularly, the sum with &, and the
sum with Ay will be referred to as quadratic term and cubic term,
respectively. The linear term models the linearity of the system,
and the rest of the series together models the nonlineariry.

Generally speaking, the series has an infinite number of terms
and each term is an infinite sum. The computation and memory
reqnnemcms make it unpossxble to base adapuve filters on this
series if no simplification is made. In pracnce. the series is able to
model many system reasonably well if it just conrains the several
major terms and each term is a finite sum. Thus, we can employ
the truncated series to construct adaptive filters. Furthermore, we
can consider that k,(iy.iz), A3(i1.izé3), and An(iq.iz, - .iw) are
symmeric, namely, the indexes of A3(i).i2), A3(i.izis), or
Ralitsi2, - in) are exchangeable. Then, an adaptive noniinear
filter can be based on the following truncated series (3][4)(5]
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where m is the total number of terms in the filter, a, is called the
order of the linear term, similarly, 4, a3, ..., aod a,, are called ord-
ers of the noniinear terms. Note the changes in the upper and lower
limirs of the summations. Obviously, this filter has a finite impuise
response (FIR), thus, the name adaptive nonlinear FIR filter.

Updating of the coefficients of the linear term of an adaptve

nonlinear FIR filter is according to (2), and updating of
other coefficients is done as follows {3](4](5]
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where j =2, 3, ..., m and y; is the step size for the jth power term.

3. Adaptive Linearization Schemes
Three adaptive linearizarion schemes will be discussed in this
section. These schemes are based on the Volterra series and adap-
tive FIR filters discussed above.

Linearization by Cancellation at the Output

As discussed in the above section, the Volterra series
represents a nonlinear system by two subsystems, one is purely
linear and another is purely nonlinear. This is described notation-
ally by

Yp k)= pr(k) + pr(k)

= Ly (u (k) + N, (u (k) 6

where yy, is the output of the linear subsystem with linear operator
L,, and yy, is the output of the purely nonlinear subsystem with
nonlinear operator N,. In this paper, whenever it is necessary to
distinguish the variables of a physical system from those of an
adaptive filter, we use the subscript p for the variables of the physi-
cal system. .

It is obvious that we can linearize a nonlinear system by sub-
tracting an estimate of the output of the purely nonlinear subsys-
tem from the output of the physical system. The estmate of the
output of the purely nonlinear subsystem can be obtained from an
adaptive nonlinear filter. This adaptive linearization scheme is
shown in Fig.1.

However, for some applications, such as a loudspeaker sys-
tem. it is hard to perform signal subtraction at the ourput side of 2
system. in some cases, it is desired or necessary to pre-distort 2
signal at the inpur side of a system, while in other cases, post-
distorting of signais may be required.

Linearization Using A Post-Processor

For some applicadons, for example, those in communicadons
systems, signals can only be processed after being received. A
post-processor can be applied to linearize such a system. as shown
in Fig.2. One method is proposed here for a weakly nonlinear sys-
tem.

In the following discussion, inversion modeling of the linear
behavior of a nonlinear system will be used. Let L™ indicate the
linear operator obtained by an adaptive linear filter which performs
reverse modeling of a physical system described by (6). Then, we
can have L™}, satisfying

L-l 17 = z-& )
where 2z indicates a delay of 5 sampies and 5 usually must be
nonzero so that the adaptive filter can converge. If the nonlinearity
of a physical system is weak, a post-processor with output

y (k) =y, (k=) = N (L~ (y, (k))) ®

can reduce (though not eliminate) the nonlinear distortion, thus,
linearizing the system. The nowton ¥ indicates an estimate of the
operator N,. We can verify this idea by some simpie algebraic
manipulations. The delayed output of the physical system can be

written as
¥p(k=0) m Ly(u(k D)) + Ny (u (kb))
Then the output of the nonlinear post-processor is
y (k) = L (u(k=5)) + Np(u(k-5) - N L Ly (k) + Ny (6))))

= L, (4 (k=5)) + N, (u (k=) = N (u(k=5) + L™ (N, (u ())))
where (7) is used. Assuming that the nonlinearity is weak, namely
1L, (k)| > N, )]
we have
18(k-8)| > 1L~ N, M ®
where (7) is again employed. Then, we have
(k) = Ly (u (k=8)) + N, (u(k=8)) = N (u(k=5))

= L, (u(k-5) 0
The remaining nonlinearity in the output is of higher order and the
output of the processor is the linearized output y,, where the sub-
script Id stands for linearized. .

To implement the linearization schemes, the operators L™
and N are needed. Adaptive linear and nonlinear FIR filters can be
used to provide their estimates. The adaptive impiementation using
adaptive FIR filters is shown in Fig.3. The adaptive nonlinear FIR
filter modeis the "forward" behavior of the physical system and
gives the operators L and N, which are the estimates of L, and N,.
The adaptive linear FIR filter models the "reverse” behavior of the
linear part of the physical system and gives the operator L™, the
estimate of L;' with a difference of a delay operawor. The input of
the adaptive linear filter can be either the output of the physical
system or the output of the linear subsystem of the adaptive non-
linear filter (sec dashed lines in Fig.3). The linear FIR filter of the

is copied from the adaptive linear FIR filter, and the
purely nonlinear FIR filter of the processor is a copy of the non-
linear operator N of the adaptive nonlinear filter. The copying
could be done right after the start of the adaptation process. How-
ever, at the beginning, the adaptive filters do not have good est-
mates, thus, the nonlinear post-processor may not reduce the non-
linear distortion and may even worsen it. Therefore, it is better to
perform the copying after the adaprive filters get reasonably good
estmates. If the input of the adaptive linear filter is the output of
the physical system, then, Fig.3. can be easily modified so that the
adaptive linear filter can serve as the linear filter of the processor
and computation can be reduced.

Linearization Using A Pre-Processor .

For other linearization applications, a nonlinear processor is
needed to pre-distort signals, as shown in Fig.4. A nonlinear pro-
cessor with the following nonlinear mapping

yi(k) = u(k=5) = L™ (N (u)) (11)
can perform the task. This can be verified easily. The output of the
physical system is '

¥p(k) = Ly (yi(k)) + N, i (k)

= Ly (u(k =) = L~ (N (k) + Np(u(k—8) = L™ (N (u(K)))

= Ly (u(k-5)) (12)

where (7) and (9) are used. Hence, the output of the physical sys-
tem is the linearized ourput, namely, y, = yu.

This scheme can also be implemented using adaptive filters,
as shown in Fig.5. The input of the adaptive linear filter is either
the output of the physical system or the output of the linear subsys-
tem of the adaptive nonlinear filter. The linear FIR filter is copied
from the adaptive linear FIR filter and the purely nonlinear FIR
filter is copied from the nonlinear part of the adaptive nonlinear
FIR filter. As in the case of linearization using a post-processor, it



is better 0 copy after the adaptive filters have run for some ume
and have good esimates.

4, Simulation Resuits

Numerical experiments on several different systems have
been performed to test the adaptive linearizaton schemes. Similar
results have been obtained and typical results are presented in this
section.

In the following tests. the physical system was modeled by a
Volterra series with a linear term, a quadratic term and a cubic
term, the adaptive nonlinear filter had the same orders as the physi-
cal system, and initiaily, all the cocfficients of the adaptive filters
were set to zero. For the scheme of cancellation at the output, the
output of the nonlinear part of the physical system was the original
distortion. The residual distortion after lincarization was the differ-
ence between the output of the linear part of the physical system
and the lincarized ourput which was the physical system output
subtracted by the output of the nonlinear part of the adaptive filter.
To measure the residual distortion for other two schemes, we have
used a reference system which was a copy of the physical system.
Its input was u(k-D), a delayed version of the original input signal
since the linearized signal was delayed by this amount in these two
schemes. The output of the linear part of the reference system is
the ideal linear output, then the residual distortion was measured as
the difference between this linear signal and the linearized signal.

Test 1

The physical syseem had the orders a,; =10, n,3 =3, and
nyy = 2. The linear part was
Yep(k) = 0.2u (k) +0.5u (k-1) + 0.3u (k-2) + 1.2u (k-3) +0.7u(k-4) +

0.05u(k-5) + 0.01u (k—6) +0.014 (k=7) + 0.01u (k-8)

—0.008u (k-9) — 0.005u (k~10)
The quadratic term was
Y quedracic (k) = 0.01u3(k) - 0.001u(k)u (k—1) — 0.001u (k)u (k=2)

+0.008u (k)u(k -3) +0.011u3 (k-1) + 0.003u (k=1)u (k=2) +
0.001u (k~1)u (k=3) + 0.009u?(k~2) + 0.002u(k-2)u(k-3)+

0.008u2(k-3)
and the cubic term was
Yeusic = 0.005u3(k) + 0.003u3(k)uk~1) - 0.005u2(k)u (k=2) +

0.009u(k)u(k~1) — 0.006u(k)u(k-1)u(k=2) — 0.00Tu(k)u(k=2) +
0.008u3 (k~1) ~ 0.001u2 (k=1 )u(k~2) + 0.002u (k-1)u(k=2) +

0.001u3(k-2)

The order of the adaptive linear filter was chosen as n =50. The
step sizes were 0.005 for A, of the adapdve nonlinear filter, and
0.001 for h,, k3 of the adaptive nonlinear filter and A of the adap-
tive linear filter. The mean square (MS) value of original non-
linear distortion of the physical system was -24.1d8. The MS
value of the linear signal, namely, the non-distorted signal, was
2.9dB.

The reduction in distortion versus the number of iterations is
shown in Fig.6 for the scheme of linearization by cancellation at
the output. This curve shows that at 6k iterations the distortion was
reduced to -107d4B, and after 20k iterations the distortion was
reduced to =2904B. In this case, subtraction of the nonlinear output
was performed once the adaptive fiiter started to work. The output
distortion was actually worse than the original distortion for the
first 1k iterations due to transients. In some applications. it is
necessary to avoid this. and so this subtraction should be per-

formed after the adaptive filter gets better estimates. The perfor-
mance of the adaptive nonlinear filter can also be deduced from
thisﬁgmsincemecuveoftheMSmforforwnd
identification of the physical system had a difference of just a few
dB with the curve shown in Fig.6 and had a very similar shape. For
the scheme with a nonlinear post-processor and the scheme with 2
pre-processor, the distortions have been reduced w -53.14B and
%.w,mpecdvdy.ﬁom-%.lda.nemdmmmmm
scheme of cancellation at output can be essendaily perfect if the
adaptive filter is able to identify the physical system well, while
other two techniques have cernain distortion residuals.

Test 2

The arders of the physical system in Tests 2 and 3 were made
larger than those in the Test 1 and were n, =20, n,3 =10, and
nyy = 3. For brevity, the values of the coefficients will not be listed
here. The order of the adaptive linear filter was chosen as & = 150.
The step sizes were 0.001 for &y, A3 of the adaptive nonlinear filter
and A of the adaptive linear filter, 0.0005 for Ay. The MS vaives of
original nonlinear distortion and linear signal of the physical sys-
tem were —27dB and 2.6dB, respectively. The distortion has been
reduced to -290dB, —58.5, and -48.0dB by the scheme of cancella-
tion at the output, the scheme with a post-processor, and the
scheme with a pre-processor, respectively.

Test 3 .

All the conditions in both Test 2 and Test 3 were the same,
except for the nonlinear parts. The nonlinear coefficients of the
physical system in Test 3 were chosen so that there was a lower
distortion in the original physical system than that of Test 2. At
40k iterations, the distortion was reduced to —2894B for the scheme
of linearization by cancellation at the output, to -81dB for the
scheme with a post-processor, and to —77d48 for the scheme with a
pre-processor from the original distortion of —444B. The distortion
reductions in Test 3 for the schemes with a pre-processor and a
pon-pmmmhxgerthmthoseinTestZsincetheoﬁgiml
distortion in Test 3 was smaller, satisfying the assumption in (9)
better.

In all tests, no significant differences in the results were
observed whether the output of the physical system or the output
of the linear part of the adaptive nonlinear filter was used as the
input signal to the adaptive linear filter.

§. Summary

Three new adaptve linearizadon schemes have been
developed. The schemes are atractive in that the resultant systems
are not complicated, making it easy to implement in both hardware
and software. The scheme using a post-processor and the scheme
using a pre-processor are designed for weakly nonlinear systems.
while the scheme of linearization by cancellation at the output can
be applied to problems with swonger nonlinearities. These
methods can find applications in acoustical systems, communica-
tions systems, etc. We are currently investigating application of
the scheme with a pre-processor to linearization of a complete
mode! of a loudspeaker system and application of the scheme with
a post-processor to equalization of a nonlinear data communication
channeL
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