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ABSTRACT

Sigma-delta modulators are used in today's
best analog-to-digital converters.

These circuits are almost entirely linear:
a single signum nonlinearity is the only
nonlinear element.

Despite their widespread use, the question
"Under what conditions is a given modulator

stable?" does not have a satisfactory answer.

A SIMPLIFIED MODULATOR
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H: Error Transfer Function.
H — 1 must be strictly causal, i.e. h,= 1.

ITS DESCRIBING EQUATIONS

Time-Domain Z-Transform Domain
¥, =sgn(x,) V=X+E
e =y —x =Y=U+HE

The time-domain equations form a set of
nonlinear recursion equations.

1-DIMENSIONAL CASE, u=0

The recursion equations are

H: = \@N=I~
e, = sgn(x,)—x,

What is the behavior of the e sequence
for various values of h,?
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WHAT WE UNDERSTAND:

The periodic behavior.

The reason for the aperiodic behavior.

The limits on both ¢ and the stable range
of hi.

WHAT WE DON'T:

The details of the distribution of e.

Is the aperiodic behaviour chaos?

2-DIMENSIONAL CASE, u=0
The recursion equations are

X, =he, +he, ,

Q: = %%\NA.N: v - .H:

Now what is the behaviour of e
for various values of k, and 4,?

In particular, under what conditions
is e bounded?
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FOLLOWING THE CRITICAL
CORNER IN STATE-SPACE
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WHAT WE "UNDERSTAND":

How stability warks for the majority
of cases when the state can range
over the whole unit square.

WHAT WE DON'T:

The range of state-space that is accessible.
Can it be fractal?

Necessary and sufficient conditions for

zero-input stability in the second-order case.

GENERAL CASE: u=0

If le,| < I for i< n,

_.H:_ = [Un + MF.N:L
i=1

S _tm_ + M_Fwal._
i=1
< ful.. +1Rl, - 1
If |, < 3-Jul..then |x,|< 2 and Je,|< 1.

Thus |4, <3 —[ul, = lel.. =1.

CONCLUSIONS

The set of zero-input stable modulators
is quite complicated. A simple rule is
unlikely to be able to produce this set.

A sufficient test for 1-stability is easily
proven, but is too restrictive.



