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Abstract:- Vector Quantization (VQ) is a powerful tech- reported in the literature. One class of architectures is

nique for low-bit rate image and video compression. How-
ever, VQ is a computational intensive technique. In this
paper, a Computational RAM (C*RAM) implementation
of VQ for real-time image compression is presented. The
C*RAM architecture enables parallel search in the direc-
tion of codewords. The C*RAM implementation uses a
simple multiplication-free distortion measure, and also
has a possibility of early exit condition resulting in signifi-
cant reductions in complexity. In addition, the proposed
achitecture can be externally programmed in contrast to
other dedicated hardware implementations. High-level
functional simulations show that the C*RAM architecture
can implement VQ in real-time for image compression.

1.0  Introduction

Vector Quantization (VQ) [1] is a promising technique
for low-bit rate image and video compression. Nasra-
badi and King [2] have presented a review of vector
quantization for image coding. In VQ, the input image is
first decomposed into a set of vectors. It is assumed that
a fixed universal codebook is available at both the trans-
mitter and the receiver. The two basic steps in VQ are
quantization and decoding. In the quantization process,
for each input vector, the codebook is searched to obtain
the closest codeword. Compression is achieved by trans-
mitting the index of the codeword. Reconstruction of
images can be implemented by simple table lookup
techniques where the label is used as an address to a
table containing the codewords.

Since VQ involves a search operation on the codebook
to obtain the closest codeword for each input vector, the
basic computation in a VQ encoder is the distance cal-
culation which computes the distortion between an
input vector and a codeword. Traditionally, the search
mechanism is implemented sequentially: each vector is
compared with the codewords one at a time. The search
complexity of VQ for K input vectors of dimension L
and a codebook of size N is O(KLN); this is computa-
tion intensive, and is therefore difficult to implement in
real-time. Recently, architectures that implement VQ for
speech and image coding applications have been

based on efficient execution of the distortion computa-
tion by using fast processors [3] or a pipeline of fast
processors [4]; in the latter case, each processor in the
pipeline executes a portion of the distortion computa-
tion. While the speedup achieved is sufficient for real
time speech coding, the search complexity is still
O(KLN). A second class of architectures is based on
parallel and pipeline execution of the VQ algorithm. For
example, Sun and Hsu [5] have reported on an architec-
ture paralleled in the direction of L and pipelined in the
direction of N. Abut et al. [6] have proposed an architec-
ture based on fuzzy associative memory (FAM) chips
where multiple input vectors are processed in parallel,
thus partially exploiting parallelism in the direction K.
Dezhgosha et al. [7] have implemented an architecture
paralleled in the direction of N, and have included on-
chip memory for fast processing. A third class of archi-
tectures implements a modified form of VQ. For exam-
ple, if a tree-searched VQ [6], or multistage VQ [8] is
used, a smaller number of codewords can be searched,
with resulting reductions in computational complexity
in the direction of N. In theory, these implementations
can provide real-time image compression.

VQ can be viewed as a pattern-matching process where
each input pattern (vector) is compared with a finite set
of templates (codeword) [9]. A promising architecture
with a high degree of parallelism for pattern-matching is
a Content-Addressable Memory (CAM) [10]. CAM
consists of a collection of cells that can be searched
simultaneously and in parallel based on their contents.
The use of a CAM for both exact and inexact matching
of patterns has been reported in the literature [11]. In
VQ, the closest codeword for a given input vector is
usually determined by employing the mean-square-error
(MSE) distortion measure. However, this measure can-
not be readily implemented in a CAM-based architec-
ture and is hence replaced by the absolute difference
measure. It has been shown [12] that the absolute differ-
ence measure results in little degradation in perfor-
mance compared to the conventional MSE measure.



         
Recently, Computational RAM’s (C*RAM) have been
proposed as an attractive alternative for implementing
CAM-based algorithms. C*RAM [13-14], is a conven-
tional RAM with SIMD (Single Instruction stream,
Multiple Data stream) processing elements added to
achieve fast on-chip computation. In this configuration,
a processing element (PE) is attached to each memory
column which is capable of executing operations in
parallel. All PE operations are sequenced by a control-
ler which can be programmed to execute a variety of
algorithms. Due to the parallel structure and program-
mable nature of C*RAM, this architecture is suitable
for image processing operations.

In this paper, we propose to implement VQ for image
compression using C*RAM. The proposed architecture
has the following advantages: parallel search in the
direction of N, complexity reduction, and fast execu-
tion of VQ with minimal degradation in performance.
This paper is organized as follows: The C*RAM archi-
tecture is reviewed in section 2. Section 3 presents the
VQ implementation using C*RAM. Section 4 provides
simulation results and performance analysis. Finally,
the conclusions are presented in section 5, followed by
the references.

2.0  Review of C*RAM

Computational RAM (C*RAM) [13] is a memory-
SIMD hybrid architecture where each column of mem-
ory has an associated processing element (PE).
C*RAM was primarily designed with the goal of aug-
menting conventional RAM’s (used in computer main
memory and video buffers) with computation capabil-
ity. The C*RAM concept makes use of the large on-
chip bandwidth to perform massively parallel bit-serial
computations. There are two major functions in a
C*RAM: memory and computation. When functioning
as memory, C*RAM is read or written as part of the
host processor address space. When functioning as a
computing engine, all PE’s execute operations (on its
own local memory) in parallel, sequenced by a control-
ler.

2.1  C*RAM Architecture

Recently, C*RAM has been fabricated in a 0.8 m
BiCMOS chip having an SRAM core[16]. There are 64
processing elements (PE) attached to the 64Kbit mem-

ory column which may effectively be considered as 64
independent computing units having its own PE and
1Kbit of local memory (figure 1).

FIGURE 1. C*RAM architecture

In the conventional memory, each memory cell is
addressed by the row and column decoders. However,
in this architecture, the entire row is addressed at the
same time. Each PE is addressed by the address stored
in its local memory. The read-execute-write cycle time
is 20ns. Communication in a C*RAM is done via the
PE of each computing unit. Currently, only left-right
communication is possible. We now describe the
details of each PE.

2.2  Processing Element Model

A PE (figure 2) has two 1-bit registers, X and Y, and a
1-bit ALU which functions as a multiplexer. Inputs to
the bit-arithmetic ALU can be contents of registers X,
Y and a memory bit M. An 8-bit global instruction
from the C*RAM controller chooses between the dif-
ferent functions of the ALU. After each computation,
the results are written back into the memory or the reg-
isters. Each X, Y register has a left or right connection
enabling data shifting and neighborhood communica-
tion between PE’s.

In addition to the X,Y registers and ALU, the Write
Enable (WE) register permits conditional operations.
WE register functions as a mask, blocking undesired
memory columns in various operations. In other words,
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the WE register is set only when there is a Write to the
corresponding memory column, or reset otherwise. We
note that different masks may be stored in the scratch
memory for different PE operations. This enables all
the PE’s in the C*RAM to participate in the global
operations without modifying the masked memory
contents.

FIGURE 2. PE model

A bidirectional bus-tie circuit performs the wired-AND
logic of all PE’s local results. This global wired-AND
is fed back to all the PE’s. The same line may also be
used by the C*RAM controller to broadcast a 1-bit
constant value to all the PE’s.

3.0  C*RAM Implementation of VQ

C*RAM implementation of VQ has been performed at
the functional level. Simulations have been carried out
using 6 standard images each of size 512x512 pixels
with a universal codebook of size 256 codewords. The
codebook was generated from a set of 10 training
images using the LGB algorithm[15]. Images are sub-
divided into blocks of 4x4 pixles to form 16-D vectors.

The codewords are pre-loaded into the C*RAM where
all 16 pixels of each codeword are arranged in one unit

(a PE and its local memory). A codebook of 256 code-
words will therefore occupy 256 units which corre-
spond to a module of 4 C*RAM chips. The encoding
process is thus executed in parallel over the entire
codebook. The input vectors are broadcast to all units
of the C*RAM module one at a time (figure 3). A
scheduler is designed to take care of the input vector
sequencing. We note that for real-time implementation,
additional modules may be required to increase the
level of parallelism. When the scheduler finds a module
in a busy state, it will redirect the input vector to the
next module for compression.

FIGURE 3. Codeword arrangement in C*RAM

In each memory column of a unit, the space is occupied
by the following:

1. Scratch memory (SM): for PE address, temporary
results, and masks for different PE operations;

2. Codeword i(CWi): comprising of 16, 8-bit pixels;

3. Input vector (IV): also comprising of 16, 8-bit
pixels. (Note that, at a particular time, all memory
columns process the same input vector);

4. Pixel distortion i (PDi): comprising of 16, 8-bit
distortions betweeen the pixels of CWi and the cor-
responding pixels of IV; and

5. Codeword distortion i (CDi): which is the sum of
all 16 pixel distortions of a particular codeword i.
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The encoding process can be executed in at most three
stages:

i. Pixel distortion calculation, 

ii. Pattern-matching search, and

iii. Absolute-difference search.

1.Pixel distortion calculation: In this stage, the pixel
distortion of each pixel of every codeword and the cor-
responding pixels of the input vector are calculated.
With a codebook of N codewords each of size L, the
pixel distortion  = Rij, for a given input vector  =
[Xj], and a codeword  = [Cij] is given by:

(1)

As shown in equation (1), the absolute value of the
pixel distortion is normally required to obtain the clos-
est codeword for each input vector. However, the
C*RAM architecture is defined for fast implementation
of logic rather than arthmetic operations.

FIGURE 4. Pixel distortion calculation in a unit

In order to facilitate the computation process, 1’s are
appended to the 2N position of each input vector pixel,
and 0’s are appended to the 2N position of each code-
word pixel, where N is the number of bits representing
the gray levels (figure 4). The pixels of the codewords
are then subtracted from those of the modified input
vector. If the Nth bit of the result  is 0, then result 
is negative, is therefore 2’s complemented.

b.Pattern-matching search: In this stage, a minimum
search is performed throughout the bit planes of the
pixel distortions to find the closest match codewords
for early detection. This stage takes advantage of the
fact that a significant number of input vectors which do
not greatly deviate from the codewords can be detected
at this stage. This can be done by conducting a minima
search on all L pixel distortions of the result  with a
search threshold being set from the bit planes BN-1 to
Bi (figure 5). This search threshold can be adjusted
depending on the nature of the image. For low-detailed
images, i may be set to 1, and for other images i can be
set to 2.

FIGURE 5. Pattern-matching search

The minimum search is carried out as follows: starting
from the most significant bit plane BN-1 of each pixel
distortion, if the bit of a unit is 0, the corresponding
unit is considered as the smaller one; if the bit is 1, the
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corresponding unit is eliminated. After each compari-
son, the remaining units become the candidates for the
search at the next bit plane. The search at each pixel
distortion is continued to bit plane Bi. The result of
each minimum search of each pixel distortion are
stored in scratch memory of the corresponding unit,
where 1 indicates the minimum value, and 0 indicates
that the vector is not qualify (please see vector M’s in
figure 5). This process is repeated L times over the L
pixel distortions. The ANDed result of the correspond-
ing units of L minima searches will determine whether
there is a match. In other words, if all L pixel distor-
tions are minimum, the corresponding unit is the clos-
est match. In the case of multiple matches, any one of
the closest codewords can be designated as the best
match.

c.Absolute-difference search: If no match has been
found in the pattern-matching search, (that is there are
no 1’s in vector P in figure 5) the closest match of the
input vector will finally be searched using the absolute-
difference search. In this stage, all L pixel distortions 
are added up to form the codeword dirtortion CDi, and
the index of the codeword which has smallest code-
word distortion will be chosen as the best match. The
distortion of each codeword is given by:

(2)

4.0  Performance

4.1  Computational complexity

Let p be the probability of encoding input vectors using
the pattern-matching search, M1 be the number of
memory cycles required to detect the closest match
using the pattern-matching search, M2 be the number
of memory cycles required to find the best match using
the absolute-difference search. M is the weighted sum
of M1 and M2 (as shown in equation 3), and the total
computational complexity using the C*RAM imple-
mentation for an image of K input vectors with dimen-
sion L and a codebook of size N is reduced to order
O(KL). M is proportional to L and can be expressed as
follows:

(3)

where p is image dependent. When p=0, M=M2, the
image is coded in the mean-absolute-difference sense.
When p=1, M=M1 the image is coded using the pat-
tern-matching technique. For low-detailed images, p is
large, therefore, M decreases. Thus the computational
complexity is further reduced.

4.2  Simulation results

The coding performance of VQ is evaluated using the
peak signal-to-noise ratio (PSNR), which is defined as:

(4)

Note that, for an MxM image, the mean-square-error
(MSE) is defined as:

(5)

where  and  denote the original image pixel and
encoded image pixel, respectively. 

The simulation results of 6 images are tabulated in
Table 1. In the first 6 cases, the search threshold was set
from bit planes 7 to bit planes 2 (figure 5). In the last 2
cases, the search threshold was set from bit planes 7 to
bit planes 1.

*These simulations were carried out with the search threshold

being set from bit plane 7 to bit plane 1 of the pixel distortions. We

note that the time to process a frame is 33ms (real-time).
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TABLE 1. VQ using universal codebook of size 256
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C*RAM

(dB)
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Sailboat 27.18 27.42 17 21.0

Lena 28.82 29.05 17 22.5

Moon 32.25 32.64 15 50.2

Airplane 29.04 29.53 14 54.2

Chest 35.12 37.96 12 82.6

Ball 34.09 38.88 10 97.5

Chest* 37.72 37.96 15 42.6

Ball* 37.74 38.88 12 69.7
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From Table 1, the following observations can be made:

1. For medium- to high-detailed images as in the case
of Sailboat and Lena, the number of C*RAM modules
used is large because of the low percentage of pattern-
matching.

2. For low-detailed images as in the case of Chest and
Ball, the number of C*RAM modules used is small
because of the high percentage of pattern-matching.
However, this results in a lower objective quality com-
pared to full search VQ. A reduced search threshold (to
bit plane 1 from bit plane 2) results in better quality
images.

5.0  Conclusions

We have presented a C*RAM implementation of VQ
for image compression. VQ involves a search operation
on the codebook to obtain the best match. The search
mechanism when implemented sequentially results in a
complexity of O(KLN). The proposed C*RAM-based
implementation of VQ results in a complexity of order
O(KL). In addition, further reduction in complexity is
made possible by the use of early exit condition. Simu-
lations demonstrate that real-time VQ encoding is pos-
sible by the proposed 64K C*RAM implementation. A
256K C*RAM is presently under fabrication. This
would reduce the number of C*RAM chips used by a
factor of 4.
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