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Abstract

It is demonstrated that the filter-bank structure of [1] can be
designed to significantly reduce the effect of intermodulation
distortion. This gives it an important advantage over other
structures in radio systems. The principle is explained, and
supported with Volterra analysis and simulation.

I.   Introduction

Filters are key components of a radio, often dominating
selectivity and dynamic range. The rapid development of
cellular telephony has recently spurred increased research on
all aspects of radio, and because off-chip filters often limit
size, flexibility, and cost, there is a strong motivation to
replace them with on-chip filtering. A superheterodyne radio
uses filters at every stage — radio-frequency (RF),
intermediate-frequency/frequencies (IF) and baseband, and
so needs many types. Off-chip filters are usually passive and
use high-Q inductors, surface acoustic wave technology, or
crystal or ceramic resonators — technologies not available
on standard silicon.

Passive filters have quite poor selectivity on chip, because
inductors have low Q. They also only have useful Q (in the
range 5 to 10) above 1GHz [2] and so can contribute mostly
to the RF section. Active-RC filters are quite slow, and useful
only at baseband or for a very low IF; switched-C filters can
be pushed to an IF of a few MHz [3]; and
transconductance-C filters are faster (up to 400MHz and
beyond [4]) but have poor linearity when designed for high
speed and low power; A/D conversion at the IF or baseband
can be used to move some filtering to the digital domain
[5-7], but some is still needed on the analog side to reduce
the linearity requirements on the converter. The Q of an
on-chip inductor can be improved by active techniques [8,9]
but again at the cost of linearity.

Linearity is vital in the design of a radio receiver [10],
because it may have to select a signal that is very close in
frequency to much stronger interferers — and the presence
of a small nonlinearity can cause nonlinear mixing products
of the interferers to produce signals that overlap the spectrum
of the desired signal. For example, the base station for a
cell-phone system can have interferers 80dB larger than the
desired signal separated by only 60kHz at a carrier of nearly
900MHz [11].

The literature on active filtering has typically looked for
structures that have low sensitivities to errors in their
components [12] or low noise gains [13]. For radio, it may be
much more important to find structures very tolerant of the
nonlinearities of their amplifiers.

II.   Modeling nonlinearities in radio amplifiers

For memoryless systems such as amplifiers and mixers a
Taylor series expansion is often a good description of
behaviour, because nonlinear terms are small by design and

so the series converges rapidly. Also by design, a balanced
circuit amplifier gain has odd symmetry so that

(1)

is often a good representation of input-output behaviour, with
the cubic term generally small compared to the linear one.
For large enough signals the cubic would eventually
dominate, and the input level  at which the two terms are
equal is referred to as the “third order intercept”

. A radio is designed to operate with signals
well below .

When the input contains a desired signal at  and an

interferer at 

(2)

there will be output terms

(3)

at frequencies

(4)

Then , the linear-gain term at the desired
frequency,  has superimposed on it two third-order terms, the
first due to gain compression, the second due to
“desensitization” by the interferer. The latter becomes a
problem when its amplitude  approaches that of
the linear-gain term , i.e., when

(5)

Hence the need for interferers to be small compared with IP3.

When the input contains two interferers at  and 

(6)

the output has desensitization terms as well as a term like

(7)

at the frequency
(8)

Since channels in a radio system are evenly spaced, this
third-order intermodulation product falls on top of a channel
— possibly the desired channel. This becomes a problem
when the distortion term amplitude  approaches the
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linear-gain amplitude  from a small input ,
i.e., when

(9)

Again, interferers must be small compared with .

III.   Nonlinearities in filters

The Taylor series can only be applied to memoryless
nonlinearities, and we are interested in the design of highly
selective active filters. We are accustomed to using Laplace
techniques, but these only apply to linear systems. Within an
active filter circuit there are many nonlinearities — the
current-voltage characteristics of a transistor are nonlinear as
are almost all its parasitic resistances and capacitances.
These nonlinearities drive the filtering components of the
nominal circuit and are further filtered by parasitics. Analysis
of a system simultaneously containing weak (Taylor-type)
nonlinearities and memory generally involves Volterra
kernels [14, 15]  which are convolved with all
possible products of delayed input signals in a form with the
structure of both the Taylor and linear convolution equations:

(10)

A frequency-domain version of this generalized convolution
can be had by taking the Fourier transform, and reads

(11)

meaning that the output power at a given frequency  can be
obtained by convolving a kernel  with all combinations of
input frequencies that add to . The kernels may be
computed for simple systems by positing an input that is a

sum of incommensurate complex exponentials , and
for a larger system by mathematically manipulating the
kernels of its components [15].

IV.   Distortion in a Gm-C biquad

If the transconductors of the simple biquad of Fig. 1 are
linear, it has a transfer function

(12)

If they each have the weak cubic nonlinearity of (1) with
coefficients ,  and  etc. (adding a subscript to

name the transconductor modeled), then the third-order
Volterra kernel becomes [17]

(13)

where  and

(14)

These expressions assist in biquad design in the presence of
interferers: for example allowing us to evaluate the effect of
changing  while keeping other parameters (peak gain, input
levels and input frequencies, and transconductor )
constant. Fig. 1 shows the intermodulation distortion term
amplitude with peak gain 20dB, 100 V inputs, desired tone
100MHz at bandcenter, interferers at 99 and 98 MHz, and
IP3 of 10mV. The desired tone’s linear output amplitude is a
constant -60dBV.

The shape of the curve allows for an intuitive explanation.
First of all, increasing  generally increases the gain to the
output of an intermodulation product at the center frequency,
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Fig. 1: A transconductance-C biquad
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Fig. 2: Intermodulation at the filter output versus Q
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so the curve tends upwards. At low  all three tones are
in-band, and the circuit behaves more or less as an amplifier
would. As  increases, though, the interferers move out of
band and excite the nonlinearity less strongly, improving the
situation. Finally, at a high enough  the gain enhancement
for intermodulation products again starts to dominate and
distortion starts to rise. This suggests that there is an
optimum  at which to design, though unfortunately other
constraints (such as the finite bandwidth of the actual radio
input, or limited accuracy in a -tuning circuit) may make
this point unreachable.

V.   The Filter Bank

The curve of Fig. 1 suggests that, with a given amplifier, it
would be desirable to notch out interferers as soon as
possible so that they could not excite . A typical biquad
notch filter does not do this, though, since the notch is
formed only for one amplifier and the others are still driven
by interferers. Thus structures like cascades and ladder
simulations [16] cannot be expected to gain much benefit
from their notches, at least in the stages up to and including
the one forming the notch.

The filter bank structure of [1], though, has the property we
want. It consists of a number of infinite-  resonators (three
in the diagram), each tuned to a different frequency and with
overall feedback providing damping. The signal  ideally
has notches at the resonator frequencies, because it is
followed by a block with infinite gain at these frequencies.
Designers accustomed to op-amps will recognize this as a
sort of “virtual ground”.

Linear analysis of Fig. 1 shows that each of the three
resonators has an output

(15)

If one resonator is tuned to the desired signal and the others
to interferer frequencies, then the interferers are nulled at the
input of the biquads because

(16)

and an  term goes to infinity at each signal frequency — so
the relevant third-order distortion term should be nulled.

Fig. 1 shows the transfer function for a filter bank and
compares it to two possible competing biquads: a low-  one
with similar passband performance and a high-  one with
similar stopband performance. The notches allow us to get a

good steep stopband without using a high , which we know
would be dangerous (recall Fig. 1). 

While (15) predicts infinitely deep notches, a practical filter
will not have its resonators tuned exactly to infinite , and
so will have finite depth notches. Fig. 1 was drawn for
resonators with =630. This will set a practical limit to the
improvement we can expect in distortion performance, and to
how close the notches can be to the bandcenter.

VI.   Volterra Analysis of the Filter Bank

The filter bank is a feedback structure containing biquads,
which individually have the Volterra representation of (13)
and (14). Let the th Volterra kernel of the  blocks be 
(so that  is just the familiar transfer function). All the
components have odd symmetry, and combining them with
additions and subtractions doesn’t change that, so the overall
system will only have odd-order Volterra kernels. Feedback
can generate higher-order kernels, but we’ll assume that
nonlinearities are weak enough that they can be ignored.
Calling the third-order kernel modeling overall gain from
input to output   it can be shown that

(17)

where the first bracketed factor represents the effect that the
loop has of reducing the input signals to the biquads at each

 and the second one represents the effect of loop feedback

at the frequency  on reducing the error induced by
intermodulation distortion. In the  case that we are
interested in, where  and , all four

denominator terms are large and help to reduce
intermodulation from the open-loop . Even if the biquads
provide only 20dB of loop gain at each frequency we can
expect more than 60dB of linearization!

VII.   Simulation

The block diagram of Fig. 1 with individual filters modeled
as in Fig. 1 with nonlinear transconductors was simulated
using a Runge-Kutta numerical integration program. The
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desired tone was at =100MHz while the interferers were

at =98MHz and =96MHz. A method of numerically

extracting Volterra series terms was applied [17] and a
comparison of the distortion terms for the three filters in Fig.
1 is presented in Table 1. All three architectures have 0dB
linear gain at bandcenter yet the filter bank shows a marked
improvement over the single-filter implementations.

A more realistic simulation was done using SPICE models of
a resonator patterned after [4] in which inductors of =5 are

-enhanced to =90 for a low-  single filter and =800
for a high-  single filter, then tuned to a frequency of

=1.83GHz. A filter bank made up of three high-  filters

with notches at =1.81GHz and =1.79GHz was

compared with the two single filters. Table 2 shows the
improvements to be expected. The intermodulation wins are
lower than might be hoped, but this can be shown [17] to be
due to the high bandcenter gain, 40dB, of each filter. Actual
filters would be designed with much smaller gains, and this
can be shown to lower the filter bank distortion considerably;
realistic filters with smaller gains were not readily available
for simulation.

VIII.   Conclusions

By selecting a filter structure properly it is possible to
radically improve the linearity of active filters, and in
particular the parallel-resonator filter-bank structure of Fig. 1
appears very good. This may open the way to replacing some

of the passive filters of a conventional radio with active ones
based on Gm-C or active-LC circuits.

This improvement requires that resonators be tuned to key
interferers, and there are two situations in which this may be
practical.
• when probable locations for interferers are known at the 

system level — such as at the “alternate channels” or in 
nearby bands allocated to other purposes.

• when the other biquads can be tuned directly to interfer-
ers actually present, as in the design of a cellular-telepho-
ny base station when several channels must be received 
anyway. In this situation all of the filter bank outputs 
would be used for reception, each also providing notches 
for the others.
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Table 1: Simple filter bank distortion term
improvements.

Third-order term

Filter bank win 
over single 

low-  filter 
(dB)

Filter bank win 
over single 

high-  filter 
(dB)

Compression 2.9 22.9

 desens. 32.9 52.6

 desens. 44.5 64.5

,  intermod 33.0 53.4

Table 2: Realistic filter bank improvements.

Third-order term

Filter bank win 
over single 

low-  filter 
(dB)

Filter bank win 
over single 

high-  filter 
(dB)

Compression -5.6 47.4

 desens. 15.0 34.0

 desens. 16.5 32.9

,  intermod 4.6 5.7
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