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Abstract

Equalizing the acoustical frequency response of a room at several
points, using several loudspeakers, involves taking the inverse of a
matrix frequency response. An exact inverse is generally not
practical because the room transfer-function matrix is often nearly
singular at some frequencies, causing high-Q equalizer peaks and
making the room response unacceptable at points other than those
where measurements are taken. We show how to diagnose and deal
with the problem. The results presented were acquired using
measurements taken in a car.

I.   Introduction

A simple mathematical view of equalization is that, given a
loudspeaker driving a room and an ear with an overall
transfer function H(s), one would put a gain H-1(s) in front of
the loudspeaker to get an overall flat gain. This is impractical
for a number of reasons:

1. Causality: the room response includes several millisec-
onds of pure delay, so H-1(s)  would be non-causal.

2. Notches: if H(s) has a notch, perhaps because of a hard 
acoustic reflection, it cannot be inverted. Even if the 
notch is not infinitely deep, it may not be practical to in-
vert it.

3. Spatial variation: Correcting the response from a source 
to one point in a room is no guarantee that it is acceptable 
at other points[1]. If, for example, a deep notch occurs at 
one location only, correcting it will cause a very audible 
sharp peak elsewhere.

4. Order: Rooms have impulse responses thousands or tens 
of thousands of samples long, making any inverse filter a 
very high-order device [2]. High order brings with it a 
heavy computing load, high accuracy requirements, and 
very slow or difficult adjustment to changes in room re-
sponse.

The “causality” problem can be resolved by accepting a
“pseudo-inverse” Hps

-1 such that HHps
-1 approximates a delay

of some τ seconds, though now there is the practical problem
of choosing a good estimate of τ. This is a simple application
of psychoacoustics, in the sense that the user may not much
mind a flat delay.

One way to address the “notch” problem is by putting an
upper limit on the magnitude of Hps

-1 , on the principle that a
small number of narrow notches are probably acceptable.
This is a more dubious application of psychoacoustics, since
there are obviously signals that will sound wrong. 

The “spatial variation” problem can be addressed by
allowing N loudspeakers, so that there are N different
transfer functions available to each point. Now if the room
response is measured at M microphone locations we have an
MxN matrix of transfer functions H(s). This may help solve
the “notch” problem in that not all responses will generally
have notches at the same place, but adds new ways for the
inverse to misbehave. 

This paper is concerned with analyzing what may happen
and suggesting what do do about it. We use experimental
data to make our points.

The “order” problem can be addressed with powerful,
high-precision, DSP chips or by use of psychoacoustic or
acoustic knowledge to find acceptable reduced-order
pseudo-inverses.

In general, the idea of a mathematical inverse has to be
replaced with that of a pseudo-inverse, chosen by applying
knowledge of the physical problem and of the way in which
sound is perceived.

II.   Notation and Assumptions

We define the room response as the vector m(s) (responses
measured at the microphones), which in the frequency
domain will be formed as the product of a matrix H(s) of
transfer and a vector l(s) of sources (loudspeakers).

(Eq. 1)

Fig. 1 shows a simple setup, illustrating the procedure for
data collection.

Fig. 1: Experimental setup (example)

In order to equalize the received signal for each of the
receiving positions, we could make use of a set of gains
which approximate the inverse of the transfer function H(s)
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for each frequency, avoiding the equalization with the direct
inverse of the transfer function matrix. This set of gains will
be referred to as “desired gains d” through this paper.

The equalizer will then drive N loudspeakers with an
approximate inverse of the room response:

(Eq. 2)

Where u is a scalar representing the signal input to the
equalizer.

The microphone positions are assumed to represent room
response nearby, but this requires that they be placed
properly and the assumption is particularly weak at high
frequencies where spatial coherence is low [3]. Roughly, the
signal at a point is fairly representative of that within a
moderate fraction of a wavelength [4]. A practical
consequence of this is that these techniques are intended for
equalizing at low to medium frequencies: by 300Hz the
wavelength is down to about a metre and a great many
microphones would be needed to measure the behaviour of a
large room.

At high frequencies it is more appropriate to use the
directivity of drivers to control spatial variation, in which
case DSP is used to invert the responses of drivers only
rather than their interactions.

The transfer function matrix is a function of frequency, or
equivalently a matrix of functions of frequency. We usually
choose to sample the response at a large number of
frequencies, and think of the problem as one of inverting a
large number of matrices of numbers — one matrix for each
frequency. Since frequency responses have magnitude and
phase, we are inverting a large number of complex-valued
matrices. In practice some of those will be difficult to invert,
and at the corresponding frequencies we expect to have
difficulties.

III.   Eigenvalues and Eigenvectors

We make extensive use of the eigenvalue-eigenvector
decomposition of the room transfer function. We do this
separately at each frequency sample. There are several ways
in which H can be difficult to invert, with different physical
causes and suggesting different treatment. The
eigen-decomposition can be used to identify these nicely;
we’ll start by looking at the decomposition and then continue
by demonstrating special cases that correspond to real
problems.

This decomposition rewrites H in the form

(Eq. 3)

where D is a diagonal matrix whose entries are “eigenvalues”
and V is a matrix whose ith column is the eigenvector
corresponding to eigenvalue i. If the “input” to H is the ith

eigenvector, then the “output” is the same eigenvector scaled
by the ith eigenvalue.

If an eigenvalue is zero, the matrix can’t be inverted because
there is an input (the corresponding eigenvector) which
produces zero output; and obviously once the signal has gone

down to zero it can’t be built back up again. There is in fact
no input whatever that can produce that output.

After analyzing the eigenvalues and eigenvectors of matrix
H, we isolate the eigenvector associated with the smallest
eigenvalue by reordering V and D so that the smallest
eigenvalue comes last; then we apply the Gram-Schmidt
procedure to orthogonalize and normalize V. The result is a
matrix that can be used to identify “good” and “bad”
components of the “desired gain”. By removing the “bad”
component we can remove the need for high gains.

The results of this analysis will be used to calculate the
“desired gains” for the equalizer.

IV.   A simple example

Suppose that a system with three loudspeakers and three
microphones has, at some frequency ωj,

(Eq. 4)

This can’t be inverted because the rows aren’t linearly
independent: row 3 is the sum of the first two. Physically,
this says that no matter what loudspeaker (column of H) is
used, microphone 3 always receives a signal that is the sum
of those at microphones 1 and 2. If the desired signal were

(Eq. 5)

which means that equal gains are desired to all microphones,
then there would clearly be a problem: the desired pattern
does not have mic 3 receiving a signal that is the sum of
those at mics 1 and 2.

On the other hand, the signal

 (Eq. 6)

would be easy enough to produce and probably just as good
from a practical point of view. The music will be louder at
mic 3 than at the other two, but as long as that is forced to be
true at all frequencies then all three frequency responses will
be flat, and that is the main objective.

We therefore want a systematic way to identify frequencies
at which there will be a problem, a way to find a “good
enough” , and a way to force the same constraints to apply
at all frequencies.

V.   Condition number

Numerical analysts define the “condition number” of a
matrix as a measure of how close it is to not having an
inverse. It is the ratio of the magnitudes of the largest and
smallest eigenvalues of the matrix; a small eigenvalue makes
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for large condition number and large gains in the inverse,
which is not feasible to implement in practical terms.

We use the condition number to identify the frequencies that
will cause problems in finding the inverse of the transfer
function matrix H. Fig. 2 shows the peaks of the condition
number to be dealt with for each frequency, from
experimental data collected using four loudspeakers and four
microphones.

Fig. 2: Condition Number versus frequency

This plot clearly shows that there are big problems near 50
and 1600Hz, and smaller problems at a handful of other
frequencies.

The condition number plot gives a simple way to identify the
most critical frequencies.

VI.   Finding the “good” and “bad” components

The matrix of (Eq. 4) can be decomposed (using the
MATLAB [5] “eig” command, for example) into

(Eq. 7)

The first two columns of V have the property that row 3 is the
sum of the first two, and represent things that can be done;
the third column is something that can’t be done. As a matter
of interest, the first eigenvalue also is a lot better than the
second, and the corresponding eigenvalues show why: a
signal that’s in-phase at all three mics is going to be easier to
produce than one in which mics 1 and 2 are 180 degrees
apart.

Now we want a systematic way to correct a given d to one
that is easy to reproduce. A technique for doing this is to
apply the Gram-Schmidt procedure to the columns of V to
produce a new matrix

(Eq. 8)

which converts between a representation of d in terms of
what can be done with various combinations of eigenvectors
and one that specifies what appears at mics.  in turn
converts in the other direction so that if we write.

If we write then:

(Eq. 9)

we will have removed the component of d that causes
trouble. In our example, a vector of ones will be changed to

(Eq. 10)

which can be reproduced. The diagonal matrix in (Eq. 9)
contains zeros to null out undesirable components and ones
to keep acceptable components. A similar technique could be
used to select just the undesirable part of d, if that were of
interest.

Now a “pseudoinverse” of H can be obtained, which works
properly provided it isn’t asked for the impossible. For an
invertible matrix we could have written

(Eq. 11)

where inverting D just involves taking the reciprocal of each
diagonal element. For a singular matrix, though, the zero
element of D blows up in D-1. Still, if the matrix only has to
produce the right answer for combinations of the “good”
eigenvectors then we could just replace the last element of
D-1 with zero. Doing that gives us a “pseudo-inverse” of
(Eq.7)

(Eq. 12)

which works out to be

(Eq. 13)

VII.   Results with Experimental Data

The algorithm was applied for a set of data collected in a car,
using two microphones (listening positions) and two sound
sources. The graph of the condition number in figure 3 for
such system shows that one major peak at around 310Hz
indicates the presence of a small eigenvalue for the transfer
function matrix at that frequency, which is responsible for a
hard inversion for that matrix.

Figure 4 then shows each element of the direct inverse of the
transfer function matrix (dotted line) plotted together with
the new “pseudo” inverse (solid line). This new inverse is to
be applied together with the desired vector as stated in (Eq.2).

The desired vector was taken from the eigendecomposition
of the transfer function matrix at the frequency presenting a
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peak for the condition number, as previously described. This
desired vector is a set of complex gains that will be applied
to all frequencies, maintaining the overall response flat.

Fig. 3: Condition Number over frequency: two positions, two sources

Now, the two inverses of the transfer function matrix versus
frequency are presented. Note the peak for the direct inverse
at around 310Hz, as expected from the condition number
plot, and its correction with the new “pseudo” inverse.

Fig. 4: Transfer function matrix inverses

Figure 5 shows the results of the equalization, which plots
the spectrum of frequencies for each microphone position,
before (dotted line) and after (solid line) the desired vector
and the new “pseudo” inverse have been found and applied
for equalization.

Fig. 5: Results for Equalization in two points

VIII.   Many constraints

Each frequency with a bad condition number implies a
constraint on what can be done with the system, and that
constraint must then be applied at other frequencies in order

to keep the transfer functions flat. If there are too many
constraints we may be in trouble, because there will be no
way in which to satisfy them all. 

Constraints need not contradict each other in practice,
though, because they may have a common cause. For
example if one microphone has lower gain than the others,
getting a large signal there while having small signals
elsewhere will be difficult — but difficult at all frequencies.
A single constraint will do all that is required.

IX.   Phase

In the practical system the gain at each frequency is
complex, meaning that it has both gain and phase. We have
already said that flat gain differences between microphones
are acceptable, and (Section I) that simple delays are
acceptable. Taken together, we are willing to allow

(Eq. 14)

and the problem is to identify acceptable gains and delays.
By repeatedly “projecting out” unacceptable components at
the most critical frequencies, a practical  is obtained.

We will also be able to accept, in practice, small deviations
from flat frequency responses. This means that our job is to
identify an overall best fit for , but that we can tolerate
minor adustments at different frequencies.

X.   Conclusions

By using matrix transfer functions it is, in principle, possible
to equalize a room at several points simultaneously.
Difficulties arise in inverting the matrices involved, but these
can be minimized by studying the eigenstructure of the
transfer function matrix and by carefully generalizing the
definition of “inverse” to allow a range of acceptable
solutions, for example those with flat delays and minor gain
variations.
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