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(57) ABSTRACT

A processing element includes an input zero detector to
detect whether the input from the neighbor processing
element contains a zero. When the input from the neighbor
processing element contains the zero, a zero disable circuit
controls the input from the neighbor processing element and
respective data of the memory to both appear as unchanged
to the arithmetic logic unit for the operation. A controller of
an array of processing elements adds a row of error-checking
values to a matrix of coefficients, each error-checking value
of the row of error-checking values being a negative sum of
a respective column of the matrix of coefficients. The
controller controls a processing element to perform an
operation with the matrix of coeflicients and an input vector
to accumulate a result vector. Owing to the error-checking
values, when a sum of elements of the result vector is
non-zero, an error is detected.
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1
COMPUTATIONAL MEMORY WITH ZERO
DISABLE AND ERROR DETECTION

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to US provisional patent
application Ser. No. 62/904,142 (filed Sep. 23, 2019),
62/929,233 (filed Nov. 1, 2019), and 62/983,076 (filed Feb.
28, 2020), all of which are incorporated herein by reference.

BACKGROUND

Deep learning has proven to be a powertul technique for
performing functions that have long resisted other artificial
intelligence approaches. For example, deep learning may be
applied to recognition of objects in cluttered images, speech
understanding and translation, medical diagnosis, gaming,
and robotics. Deep learning techniques typically apply many
layers (hence “deep”) of neural networks that are trained
(hence “learning”™) on the tasks of interest. Once trained, a
neural network may perform “inference”, that is, inferring
from new input data an output consistent with what it has
learned.

Neural networks, which may also be called neural nets,
perform computations analogous to the operations of bio-
logical neurons, typically computing weighted sums (or dot
products) and moditying the results with a memoryless
nonlinearity. However, it is often the case that more general
functionality, such as memory, multiplicative nonlinearities,
and “pooling”, are also required.

In many types of computer architecture, power consump-
tion due to physically moving data between memory and
processing elements is non-trivial and is frequently the
dominant use of power. This power consumption is typically
due to the energy required to charge and discharge the
capacitance of wiring, which is roughly proportional to the
length of the wiring and hence to distance between memory
and processing elements. As such, processing a large num-
ber of computations in such architectures, as generally
required for deep learning and neural networks, often
requires a relatively large amount of power. In architectures
that are better suited to handle deep learning and neural
networks, other inefficiencies may arise, such as increased
complexity, increased processing time, and larger chip area
requirements.

SUMMARY

According to one aspect of this disclosure, a processing
device includes an array of processing elements, each pro-
cessing element including an arithmetic logic unit to per-
form an operation, each processing element connected to
memory to store data for the operation. The processing
device further includes interconnections among the array of
processing elements to provide direct communication
among neighboring processing elements of the array of
processing elements, wherein a processing element of the
array of processing elements is connected to a neighbor
processing element via an input selector to selectively take
output of the neighbor processing element as input to the
processing element for the operation. The processing ele-
ment further includes an input zero detector to detect
whether the input from the neighbor processing element
contains a zero, and a zero disable circuit connected to the
input zero detector. When the input from the neighbor
processing element contains the zero, the zero disable circuit
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2

is to control the input from the neighbor processing element
and respective data of the memory to both appear as
unchanged to the arithmetic logic unit for the operation.

The input zero detector may further detect whether the
respective data of the memory contains a zero. The zero
disable circuit may control the input from the neighbor
processing element and respective data of the memory to
both appear as unchanged to the arithmetic logic unit for the
operation, when either or both the input from the neighbor
processing element or the respective data of the memory
contains the zero.

According to another aspect of this disclosure, a control-
ler of an array of processing elements is configured to add
a row of error-checking values to a matrix of coefficients,
each error-checking value of the row of error-checking
values being a negative sum of a respective column of the
matrix of coeflicients, load the matrix of coefficients into the
array of processing elements as serialized coefficients, load
an input vector into the array of processing elements, and
control the array of processing elements to perform an
operation with the matrix of coefficients and the input vector.
The operation may include performing a parallel operation
with the serialized coefficients in the array of processing
elements and the input vector, accumulating a result vector,
and rotating the input vector in the array of processing
elements and repeating the performing of the parallel opera-
tion and the accumulating until the operation is complete.
When the operation is complete, a sum of elements of the
result vector is computed and an error in the operation is
detected when the sum is non-zero.

The controller may be configured to repeat the operation
using a different array of processing elements when the error
is detected.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of an example computing
device that includes banks of processing elements.

FIG. 2 is a block diagram of an example array of
processing elements.

FIG. 3 is a block diagram of an example array of
processing elements with a controller.

FIG. 4 is a block diagram of an example array of
processing elements with a controller and memory.

FIG. 5 is a schematic diagram of example processing
elements and related memory cells.

FIG. 6 is an equation for an example matrix multiplication
carried out by the processing elements and memory cells of
FIG. 5.

FIG. 7A is a schematic diagram of an example state
sequence of the processing elements and memory cells of
FIG. 5.

FIG. 7B is a schematic diagram of an example state
sequence of the processing elements and memory cells of
FIG. 5.

FIG. 7C is a schematic diagram of an example generalized
solution to movement of input vector components among a
set of processing elements.

FIG. 8 is a flowchart of an example method of performing
operations using processing elements and memory cells.

FIG. 9 is a block diagram of an example processing
element and related memory cells.

FIG. 10 is a block diagram of an example of the neighbor
processing element interconnect control of FIG. 9.

FIG. 11 is a block diagram of an example bank of
processing elements with an array of processing rows and a
switching circuit to couple rows together.
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FIGS. 12A-E are schematic diagrams showing examples
of various interrow connections that may be made with
reference the example bank of FIG. 11.

FIGS. 13A-B are block diagrams showing examples of
switches connecting second ends of two rows of processing
elements.

FIG. 14 is a block diagram of processing eclements that
may be selectively paired to operate at increased bit widths.

FIG. 15 is a block diagram of an example processing
element and associated memory arrangement.

FIG. 16 is a block diagram of an example two-dimen-
sional array of processing banks connected to an interface.

FIG. 17 is a block diagram of an example of the reversing
segment of FIG. 16.

FIG. 18 is a block diagram of another example of the
reversing segment of FIG. 16.

FIG. 19A is a schematic diagram of an example error
checking scheme that may be used with a row of processing
elements.

FIG. 19B is a flowchart of an example method of per-
forming operations using processing elements and memory
cells with error detection.

FIG. 20 is an equation showing a numerical example of
the error checking scheme of FIGS. 19A and 19B.

FIG. 21 is a block diagram of an example processing
element with zero detection and disabling functionality.

FIG. 22 is a block diagram of memory cells associated
with a processing element, where the memory cells are
configured in blocks and related caches.

FIG. 23 is a block diagram of an arrangement of memory
cells and associated processing elements of FIG. 22 con-
nected by memory-sharing switches.

FIG. 24 is a block diagram of an example zero disable
circuit.

DETAILED DESCRIPTION

The techniques described herein aim to improve compu-
tational memory to handle large numbers of dot-product and
neural-network computations with flexible low-precision
arithmetic, provide power-efficient communications, and
provide local storage and decoding of instructions and
coeflicients. The parallel processing described herein is
suitable for neural networks, particularly where power con-
sumption is a concern, such as in battery-powered devices,
portable computers, smartphones, wearable computers,
smart watches, and the like.

FIG. 1 shows a computing device 100. The computing
device 100 includes a plurality of banks 102 of processing
elements. The banks 102 may be operated in a cooperative
manner to implement a parallel processing scheme, such as
a single instruction, multiple data (SIMD) scheme.

The banks 102 may be arranged in a regular rectangular
grid-like pattern, as illustrated. For sake of explanation,
relative directions mentioned herein will be referred to as up,
down, vertical, left, right, horizontal, and so on. However, it
is understood that such directions are approximations, are
not based on any particular reference direction, and are not
to be considered limiting.

Any practical number of banks 102 may be used. Limi-
tations in semiconductor fabrication techniques may govern.
In some examples, 512 banks 102 are arranged in a 32-by-16
grid.

A bank 102 may include a plurality of rows 104 of
processing elements (PEs) 108 and a controller 106. A bank
102 may include any practical number of PE rows 104. For
example, eight rows 104 may be provided for each controller

5

10

15

20

25

30

35

40

45

50

55

60

65

4

106. In some examples, all banks 102 may be provided with
the same or similar arrangement of rows. In other examples,
substantially all banks 102 are substantially identical. In still
other examples, a bank 102 may be assigned a special
purpose in the computing device and may have a different
architecture, which may omit PE rows 104 and/or a con-
troller 106.

Any practical number of PEs 108 may be provided to a
row 104. For example, 256 PEs may be provided to each row
104. Continuing the numerical example above, 256 PEs
provided to each of eight rows 104 of 512 banks 102 means
the computing device 100 includes about 1.05 million PEs
108, less any losses due to imperfect semiconductor manu-
facturing yield.

A PE 108 may be configured to operate at any practical bit
size, such as one, two, four, or eight bits. PEs may be
operated in pairs to accommodate operations requiring wider
bit sizes.

Instructions and/or data may be communicated to/from
the banks 102 via an input/output (I/O) bus 110. The I/O bus
110 may include a plurality of segments.

A bank 102 may be connected to the 1/0 bus 110 by a
vertical bus 112. Additionally or alternatively, a vertical bus
112 may allow communication among banks 102 in a
vertical direction. Such communication may be restricted to
immediately vertically adjacent banks 102 or may extend to
further banks 102.

A bank 102 may be connected to a horizontally neigh-
boring bank 102 by a horizontal bus 114 to allow commu-
nication among banks 102 in a horizontal direction. Such
communication may be restricted to immediately horizon-
tally adjacent banks 102 or may extend to further banks 102.

Communications through any or all of the busses 110,
112, 114 may include direct memory access (DMA) to
memory of the rows 104 of the PEs 108. Additionally or
alternatively, such communications may include memory
access performed through the processing functionality of the
PEs 108.

The computing device 100 may include a main processor
(not shown) to communicate instructions and/or data with
the banks 102 via the I/O bus 110, manage operations of the
banks 102, and/or provide an 1/O interface for a user,
network, or other device. The I/O bus 110 may include a
Peripheral Component Interconnect Express (PCle) inter-
face or similar.

FIG. 2 shows an example row 104 including an array of
processing elements 108, which may be physically arranged
in a linear pattern (e.g., a physical row). Each PE 108
includes an arithmetic logic unit (ALU) to perform an
operation, such as addition, multiplication, and so on.

The PEs 108 are mutually connected to share or commu-
nicate data. For example, interconnections 200 may be
provided among the array of PEs 108 to provide direct
communication among neighboring PEs 108.

A PE 108 (e.g., indicated at “n”) is connected to a first
neighbor PE 108 (i.e., n+1) that is immediately adjacent the
PE 108. Likewise, the PE 108 (n) is further connected to a
second neighbor PE 108 (n+2) that is immediately adjacent
the first neighbor PE 108 (n+1). A plurality of PEs 108 may
be connected to neighboring processing clements in the
same relative manner, where n merely indicates an example
PE 108 for explanatory purposes. That is, the first neighbor
PE 108 (n+1) may be connected to its respective first and
second neighbors (n+2 and n+3).

A given PE 108 (e.g., n+5) may also be connected to an
opposite first neighbor PE 108 (n+4) that is immediately
adjacent the PE 108 (n+5) on a side opposite the first






