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Abstract —This paper is concerned with the realization of a given
arbitrary filter transfer function as a network of resistively interconnected
integrators. These state-space realizations are synthesized using a new
technique called intermediate function (IF) synthesis. The technique is
based on the selection of a set of functions to serve as either the transfer
functions from the filter input to the integrator outputs or the transfer
functions from the integrator inputs to the filter output. Relationships
between the filter sensitivity and dynamic range and the intermediate
functions are derived. A number of results are also given to aid in the
selection of a set of IF’s that yields structures with optimum performance.

I. INTRODUCTION

N THE VLSI era, as mixed analog/digital circuitry of

increasing complexity is implemented on a single IC
chip, the need becomes even greater for analog filter reali-
zations that have very low sensitivities and, most im-
portantly, low-noise performance. In fact, it appears that
noise is the major problem with the currently popular
approach for implementing monolithic filters, namely the
switched-capacitor technique [1).

Structures for filters suitable in a VLSI environment are
likely to consist of a number of identical operator blocks,
e.g., integrators, connected together with feedback and
feedforward networks [2]. Each such operator block could
be implemented by a very simple circuit, for instance
integrators could be realized as simple controlled current-
sources feeding capacitors. On the other hand, the feed-
back network could be extensive, and designed so as to
make the overall sensitivities and noise very small.

Motivated by this philosophy, this paper presents a new

- technique for the synthesis and analysis of analog filters.
The method is concerned with the realization of a given
nth order transfer function #(s) with a structure of n
resistively interconnected integrators. It will be shown that
the design process consists of two steps: 1) selection of a
set of n functions, called intermediate transfer functions
(IFs) from the given #(s); and 2) synthesis of a circuit
realization of #(s) from the selected IF’s. Because, as will
be seen, the second step is quite straightforward, the design
effort can be concentrated on the first, namely the selection
of a “good” set of IF’s.
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The major advantage of the proposed method is that the
IF’s can be very effectively employed in determining the
expected sensitivity and dynamic range performance of the
active filter; a “good” set of IF’s is obviously one that
optimizes these performance measures. Of particular sig-
nificance here is that performance evaluation and optimi-
zation is performed not at the level of circuit topology but
at the more abstract level of IF’s and thus at a very early
stage in the design process. It should also be pointed out
that, unlike earlier attempts in this direction [3], the pro-
posed method does not rely on numerical optimization
techniques, and thus affords greater insight inoto the prop-
erties of “good” filter structures.

In Section II we define the IF’s and present the synthesis
method. The use of IFs in sensitivity analysis is described
in Section III. Their application to dynamic range analysis,
scaling, and optimization is the subject of Section IV. In
Section V the IF method is employed in the synthesis and
structural study of a number of old and new filter realiza-
tions.

II. INTERMEDIATE FUNCTION SYNTHESIS

A. State-Space Description

As mentioned above we are interested in the realization
of an nth-order active filter as a structure of n resistively
interconnected integrators. Such a system is most conve-
niently described by the state-variable formulation [4], [5]

sx(s) =Ax(s)+ bu(s) (1)

y(s) =cTx(s)+du(s) (2)
where the vector x(s) represents the circuit states (integra-
tor outputs), the matrix 4 describes the interconnection
(feedback and feedforward paths) of the n integrators, the
vector b contains the coefficients that multiply the input
signal u(s) as it is applied to the inputs of the integrators,
the vector ¢ contains the coefficients required to form the
output y(s) as a weighted sum of the »n states, and the
scalar d is the coefficient of the feedthrough component
from input to output.

Given a set {A, b,c,d} one can easily obtain a variety
of active circuit realizations. In this paper we shall be
specifically interested in realizations that maintain a direct
correspondence between the system coefficients (that is,



elements of A, b, ¢ and d) and the circuit component
values. Such a realization will be referred to as a State-space
filter.

The transfer function of the filter described by (1) and
) is

t(s) éy—(s—)-=cT(sI—-A)—lb+d

u(s)
p(s)
3
) (3)
where e(s) is the natural mode (pole) polynomial (of order
n) and p(s) is the transmission zero polynomial (of order
< n).

Y

B. Intermediate Transfer Functions

We define two dual sets of intermediate transfer func-
tions: { fi(s)} and {g,(s)}. The first set, { f,(s)}, contains
the transfer functions from the filter input to the integrator
outputs

x;(s)
u(s)
Using (1) one can show that the vector f(s) that contains
the f,(s) functions is given by
f(s)=(sI—4)7"b. (4)
The second set of intermediate functions, {g:(s)}, con-

tains the transfer functions from integrator inputs to the
filter output

fi(s) &

2 Y(s)
gi(s) 2 G (5)

where ¢€,(s) is the ith component of a vector of auxiliary
input signals injected at integrator inputs according to

sx(s) = Ax(s)+ bu(s)+e(s). (6)

Since ¢,(s) can model the noise generated at the input of
the ith integrator, g;(s) can be physically interpreted as
the noise gain of integrator i. We will occasionally refer to
the functions {g;(s)} as noise gains and to {fi(s)} as
signal gains. These interpretations will be found especially
meaningful in the context of dynamic range analysis in
Section IV.

From the definitions of the g functions in (5) and using
(6) together with (2) while setting u(s) = 0, the vector g(s)
can be obtained as

g'(s)=c"(sI-4)"". (7)

From (3), (4) and (7) we observe that f(s), { f:(s)} and
{8:(s)} all have the same poles, the roots e,, e,, - -,e, of
the natural mode polynomial e(s)=det(sI — A). Now
selecting the vector »(s) where

1
n(s) = (®)

s—e;
as a basis for expressing functions in an n-dimensional

vector space we can write!

t(s)=tTv(s)+1,,, 9)
f(s)=Fr(s) (10)
g(s) = Gu(s) (11)

where ¢ is a vector containing the n residues of t(s) at the
poles and 1, , is the residue at s = co (in other words, C)]
is a partial fraction expansion of t(s)), F is a matrix
containing the residues of the f functions evaluated at the
poles, and G is a matrix of the residues of the g functions.
The elements of ¢, F and G are in general complex
numbers.

The representations in (9), (10) and (11) enable the
derivation of the following novel expressions which give
the system parameters {4, b,¢,d } in terms of the f func-
tions, and thus represent the essential step in the synthesis
procedure that will be described shortly

A= FEF! (12)
b=F1 (13)
c"=¢"F 1 (14)
d=t,,,. (15)

Here E is a diagonal matrix having the natural modes
€,€y," ", e, as its elements and 1=(1 1---1)7.

Finally we can derive the following simple formula relat-
ing F and G:

G"=HF! (16)

where H is a diagonal matrix formed from the residues of
1(s), i.e, H=diag(t,,1,,"--,t,). This equation shows that
G is inversely related to F and directly to (s). It will be
seen later that this relationship has significant implications
concerning filter performance.

To help in visualizing the structure of state-space filters
we show in Fig. 1 their signal flow-graph representation,
with the intermediate transfer functions indicated with
broken lines.

C. IF Synthesis

Given a transfer function #(s), IF synthesis is based on
choosing a set of linearly independent functions, all having
the same denominator polynomial e(s) and arbitrary
numerator polynomials of degree less than n. This set of
functions can serve as { f,(s)} and from it we can obtain
the {4, b, ¢, d} parameters of a unique canonic realization
using (12)—(15). The g functions of this realization can be
evaluated using (16) and together with the f functions can
be used to determine the expected performance of the
realization, as will be outlined in the next two sections.
Finally, note that rather than starting the synthesis with a
set of f functions we may start with a set of g functions

'We assume that e(s) has no repeated roots. This is a reasonable
assumption to make for filter circuits. This assumption could be removed,
at some cost to the clarity of the development and simplicity of the
formulas.



Fig. 1. Signal flowgraph of general system of state equations.

which must satisfy similar requirements as those stated
above for the f functions.

The requirement of linear independence follows from the
fact that a canonical realization must have n independent
states; otherwise one or more of the integrators would be
redundant and one could obtain a realization with less
than n integrators; a clearly impossible task. Mathemati-
cally, if the IFs were not independent the matrix F would
not be invertible and (12)-(15) could not be used to
determine {4, b,¢,d}.

The requirement that the numerator order must be less
than n follows from the fact that { f;} are transfer func-
tions to integrator outputs and thus must have at least one
transmission zero at s =oo. Within these constraints the
choice of n functions to serve as IF’s is arbitrary. Clearly,
however, the choice must be made with a view to optimiz-
ing performance. Indeed it is the fact that filter perfor-
mance can be directly related to IFs that makes this
synthesis method attractive.

To illustrate the IF synthesis method let us consider a
simple example, namely the second-order Butterworth
transfer function

t(s)=1/(s*+V2s+1).
‘We may arbitrarily choose as intermediate functions

fi(s) =1/e(s) and fy(s) =s/e(s)

where
e(s)=s*+V2s+1

=(s+—‘/1-2_——j-‘/—12_-)(s+%+j71—2—).

1 1 1 1
=——+4 j—= d =— = j—.
Y R B S/
We also have
1 1 \T

t=(-j/z jz)"

tn+1 =0

Thus

-Jj/V2 iz
1 1 .
S A+7) 50-))
Substituting in (12)-(15) yields

0 1

A=[_1 —ﬁ] b=[0 1]7
¢’=[1 0] d=o.

N
H_[ 0 j/ﬁ]'

Also
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Fig. 2. Circuit implementation of the second-order state-space filter
example.

oV,

Thus substituting in (16) gives

1 N~

, '5(1_./) \/f
G'= .
1 . J

5 (1+)) &

from which the g functions are obtained as.

gi(s) =(s+v2)/e(s) and g,(s)=1/e(s).

It should be noted that because this is a low-order
example, the {4, b,c,d} elements could have been more
easily obtained by substituting the selected { f;} in the state
equations and employing coefficient matching [6]. We have
chosen, however, to use the matrix formulas in order to
illustrate their application and because computer programs
implementing IF synthesis can use them.

Once { A4, b, ¢, d} are determined one can easily derive a
state-space circuit realization. As an example, using op-
amp integrators we obtain the circuit in Fig. 2 for the
Butterworth filter. This circuit can be easily recognized as
the Tow-Thomas state-variable biquad [7), [8].

As another example, let it be required to design a
state-space filter that simulates the operation of the third-
order doubly terminated LC ladder network shown in Fig.
3. To achieve this simulation, the f functions must be
chosen so that the state variables of the active filter are
analogs of those of the LC ladder which are the capacitor
voltages and inductor currents. It follows that
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Fig. 4. Investigating the sensitivity to the transmittance ¢
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Fig. 5. Derivation of the sensitivity to 4, ;.

These functions can be obtained from ladder analysis and
{A,b,c,d} can then be determined using (12)—(15). The

result is
-1 1 0 1
A=1]-0.5 0 0.5 b=1|0
0 -1 -1 0
eT= [0 0 1] d=0.

Note the tridiagonal structure of 4 which is a result of the
ladder topology [9]. Obviously, this particular design could
have been obtained using well known techniques [10]. IF
synthesis, however, is capable of handling more com-
plicated cases and of accurately predicting performance, as
shown below.

III. SENSITIVITY

In this section we show how the f and g functions can
be used to predict the sensitivity performance of state-space
filters. Specifically, expressions will be derived for the
sensitivities of the transfer function #(s) to the state-space
system parameters { 4, b, ¢, d } and to errors in the transfer
functions of the integrators. These results follow as a direct
application of a well known formula originally derived in
[11] using Tellegen’s theorem. This formula relates the
change in the transfer function of a system to the change in
the transfer function of one of its constituent blocks.
Specifically, for the system represented by the signal flow-
graph in Fig. 4 we have

dt,,
d,,.,

=t,m!

am®nb* (17)

To find the sensitivities of #(s) relative to the elements
of the A4 matrix consider Fig. 5 which shows how the
output of the integrator j is applied to the input of



integrator i. Comparing this to the graph in Fig. 4 enables
us to use the formula in (17) to obtain

dt(s)

3, =816, (18)
The classical sensitivity function

o & at (s) A,

o t(S)

can now be found as
Sy =28/(s)f; (19)
t( )

In a similar way we can find the sensitivities to the b, ¢
and d elements as

S =g,(s i (20)
( )
SO =fi(s) = ( ) (21)
=2 (22)
t(s)

Since state-space filter implementations maintain a di-
rect correspondence between circuit components and ele-
ments of the {4, b,¢c,d} system, it follows that the for-
mulas in (19)-(22) do in fact give the sensitivities of the
transfer function 7(s) to the conductance values of the
resistors that interconnect the integrators. It now remains
to find the sensitivities relative to the transfer functions of
the integrators. Toward that end consider the situation
depicted in Fig. 6. Here we have lumped the errors in the
transfer function of integrator / in a single block having a
transfer function y,(s) and placed in cascade with an ideal
integrator. The function ¥,(s) includes the error in the
integrator transfer function caused by changes in the value
of the integrator capacitor as well as those errors caused by
the finite gain and limited bandwidth of the integrator op
amp (if an op amp realization is used). Nominally v,(s) =1.
Now comparing Figs. 6 and 4 we see that z,,, = f,(s) and
t,, = 5g,(s). Thus

Sl(s)

v:i{s)

(23)

Since the integrator gain is inversely proportional to the
value of its capacitor it follows that the sensitivity to the
capacitor value is just the negative of the value given by
(23). The sensitivity function given by (23) can also be used
to find the effects of the finite gain and bandwidth of the
op amp by deriving an expression for y,(s) in terms of op
amp gain p,(s) and using

Hs) = C1(s) Qvi(s)
S, ri(s) SY(S)SM(S)

= 15)85) 75

(24)

We shall not carry out this development here any further
except to note that S is dependent on the integrator
gain or equivalently on its effective time constant; the

greater the gain required from an integrator the larger the

Y =1

(B b

t(s)

Fig. 6. Derivation of the sensitivity to the ith integrator.
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sensitivity to its op amp nonidealities. In terms of
{A,b,¢c,d} elements the gain of integrator i is propor-
tional to the row sum

[ X 4,0+ Ib.»lJ-
j=1

It follows that realizations in which these row sums are
large exhibit increased sensitivities to op amp nonidealities.
On the other hand, “good” realizations have row sums that
are almost equal and small in value, as demonstrated by
the examples of Section V.

As an example of the application of the sensitivity
formulas above consider the third-order state-space filter
designed in Section II. Its { f;} and {g;} are

fi(s) = g,(s)
=(s+0.5+ j0.5)(s +0.5— j0.5)/e(s)
f(s) =05(s+1)/e(s)
f3(s) = g1(s) =0.5/e(s)
8:(s) =—(s+1)/e(s)
where
t(s) = e(5)
0.5
~ (s+1)(s +0.5+ j0.866)(s +0.5— ;0.866) "

We can use (19) to find that, e.g.

t(s) =

A“ 81f1 t( )

_ —05(s+0.5+ j0.5)(s +0.5— j0.5)
- p(s)e(s)

Plots showing [S{/“)| and Re[S;/)] = S}¥“) appear in
Fig. 7. Inspection of the curve for S,',"1 reveals a maximum
value of about 0.75 near s = j1, the passband edge. This
may be interpreted according to the formula [10]

A4
= 8.68S}! T‘l,

11

A Attenuation(w) = 8. 68

in decibels
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Fig. 7. Sensitivity of the ladder simulation circuit to 4;,.

to find that a 1 percent error in A4, causes a 0.065 dB error
at the passband edge.

Because for this ladder network we have f, =g, and
/=g, then f,g, = f;g; which results in S{9 = S{*; that
is, errors in the ladder terminations have identical effects.

Fig. 8 shows plots of the real and imaginary parts of
integrator sensitivities S for integrators 1 and 3 (which
are equal because f,g, = f;8;). The real and imaginary
parts of the sensitivity function measure, respectively, the
sensitivities of |¢| to gain and phase errors in integrators.
Note the low sensitivity of |¢] in the passband, which goes
to zero at the reflection zeros. Thus the active filter has the
same sensitivity properties as those predicted by Orchard
[12] for the LC ladder being simulated.

The individual sensitivity values evaluated using the
formulas above can of course be combined together to
form any desired multiparameter sensitivity figure [13]. We
shall not, however, pursue the subject of aggregate sensitiv-
ity measures here. Rather, we shall conclude this study of
sensitivity of state-space filters by considering the question
of minimizing the sensitivity of the filter to its integrators.
Although optimizing sensitivity to integrators addresses
only part of the general problem of designing a good filter
it appears to be an important part for two reasons. Firstly,
integrators are often the “weak link.” Secondly, designs
insensitive to their integrators appear to have good dy-
namic range, low component spreads, and low sensitivities
to system coefficients in general. As an example, we ob-
serve that the good sensitivity behavior of LC ladders with
respect to their reactive components at reflection zeros can
be seen as guaranteeing good performance with respect to
the ladder “integrators;” the LC components. Design by
ladder simulation seeks to maintain the same low sensitivi-
ties to active-RC integrators. Thus a good solution to the
problem of minimizing integrator sensitivities should be at
least as good as LC simulation.

The following important sensitivity invariant which is
useful for sensitivity minimization can be derived [14]

dt(s)

L (s)gi(s) == - (25)

In words, the sum over all products f;(s)g;(s) is indepen-
dent of the realization. Combining (23) and (25) we obtain

Seasitivity
1 Re
0s
im
-r v v v ™
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Fig. 8. Sensitivity of the magnitude of the transfer function of the LC
ladder simulation circuit to the magnitude and phase of the first
integrator.

a classical sensitivity result

ysio - 2 4)
Rt t(s) ds
Now suppose we wish to minimize an aggregate measure
of integrator sensitivity of the form Zi|S;fs)|P with p>1.
Because the sum of the sensitivities is constant (equation
(26)) it follows that the minimum is obtained when all
sensitivities are equal. We therefore seek the realization (if
it exists) for which, for all i

gL 3 ()

Y nt(s) ds
This represents a lower bound on integrator sensitivity.

Using (27) together with (23) yields for the minimum-sensi-
tivity realization

(26)

(27)

1()8(s) == = )

Application of this formula to the second-order case was
given in [15]. For higher orders this minimum-sensitivity
realization is attainable only in special cases. It is possible,
however, to obtain realizations that are “close” to this
minimum (Section V). Finally, it should be mentioned that
in studying the integrator sensitivities of a given realization
more insight is gained by normalizing these sensitivity
figures relative to those for the minimum-sensitivity reali-
zation. Specifically, in Section V we shall use the function

fitjw)g(jw)
lat (jw)/de]
This normalized measure of integrator sensitivity enables
one to see how close a design is to being optimum: The
optimum design, if it exists, would have S, (w)=1/n

Vi, w. To further simplify sensitivity comparisons we shall
frequently use the worst-case function

S, (@)= m?xSYI(w).

vi. (28)

. (29)

S, (w) =

(30)
Here the subscript co notes an L norm.

1V. DyNaMIC RANGE

Dynamic range is the ratio of the largest to the smallest
signal that the filter can accommodate. While the largest
signal is usually determined by amplifier saturation or



slew-rate limiting, the smallest useful signal is determined
by electrical noise. Dynamic range has been thoroughly
studied for digital filters [16]. In this section we present
results on the dynamic range of the less extensively studied
analog case. Of special interest is the relationship of dy-
namic range to the intermediate functions of IF synthesis.
We will be interested in three problems: analysis of a
design to find its dynamic range, scaling of a given struc-
ture to optimize its dynamic range, and synthesis of struc-
tures that have good dynamic range.

A. Measuring Signal Magnitudes

In order to maximize the signal handling capability of a
filter, and thus its dynamic range, one must design the
filter so that the maximum signal magnitude at the output
of each integrator is as large as the amplifier would allow
without incurring significant distortion due to clipping or
slew-rate limiting. For a given design, this signal maximiza-
tion can be always achieved through the process known as
scaling. Before we discuss scaling, however, we must decide
on a mathematical measure for signal magnitude.

The choice of a measure for the magnitude of x,(s)

x;(s) = fi(s)u(s)

depends strongly on the filter application and in particular
on what is known about the input signal u(s). Two cases
are of special interest. The first concerns filters for which
the input signal is known to consist primarily of a sinusoid
of known peak amplitude M, and of frequency in a given
range; w € (w,,w,). In this case of a swept-frequency
input the natural measure for the magnitude of x;(jw) is
its absolute value

x;(jw) = M| f,(jo)l.

Thus the maximum signal magnitude at the output of
integrator i is

%:(J&) | max = M, max |f;(jw)l, @€ (w,,0,) (31)

which is an L_ norm on the frequency response and is
denoted ||x;( jw)|| . This type of measure is easy to evaluate
and has traditionally been used for scaling analog filters
[10], [17], [18]. Its usefulness, however, is limited because of
the inherent assumption of a swept-frequency input.

The second special case of interest is that where the
power spectrum of the input signal, P, (w), is known,
enabling us to find the power spectrum of x,(s) as

P (0) =P, (w)lfi(jo)I*.

Here an appropriate measure for the magnitude of x;(s) is
its rms value, or L, norm

(o)l =y [ Po(@)do.

Assuming that the input power spectrum is white with
density M? then

llx; (o)l = M £, ()l

(32)

(33)

where the L, norm of f,(jw) is given by
OO0
GG = [ o) do.

It is believed that L, measures of signal magnitude apply
to a much wider class of filter problems than L_ measures.?

(34)

B. Noise

In continuous-time analog filters, noise is contributed by
all active devices and resistors, and interfering signals are
coupled into the circuit in various ways. One can usually
treat the overall effect as equivalent to injecting noise only
at the inputs of integrators. It is also usually reasonable to
assume that these noise sources are independent of each
other.

Noise signals injected at integrator inputs can be mod-
eled by e(s) in (6) and thus the functions { g,(s)} give the
gain to the filter output for each of the input noise signals.
If we assume that the noise signals all have white spectra
with equal densities N2, then the output noise will have a
power spectrum

Pno(w)—:MZZlgi(jw)'z‘ (35)
i

Thus the noise gain of the filter is ¥;|g;(jw)}?. For each

realization of a given filter one can evaluate the noise gain

function and use it for comparison. One can also obtain

the rms noise level at the output by taking L, norms

1Pao(@)llz =Ny [ [~ Elgi(w)*de

Thus we can use X,||g;||3, which is the output noise power
obtained when all integrators have white nosie of unit
power spectral density, as a figure of merit for comparing
the noise performance of different realizations.

(36)

C. Scaling

For a given design, one is generally free to set the signal
levels at integrator outputs arbitrarily by scaling oper-
ations. If too high a level is chosen, the amplifier will
occasionally clip or slew-rate limit, while if too low a level
is chosen the ratio of signal to noise will be low. We shall
be interested in scaling so that the maximum signal magni-
tude at the output of each amplifier is equal to that that
the amplifier is capable of supporting, denoted M. It
should be noted, however, that the value of M depends on
the type of norm (L, or L,) used to measure signal
magnitude. For the commonly used L, norms, M is
simply determined from amplifier specifications. The de-
termination of M is more involved when L, norms are
used [14] and will not be pursued here.

Scaling can be performed on the circuit implementation,
on the signal-flowgraph representation, or on ,the

2To accommodate signals that do not have white spectra one may
include a frequency weighting function W(w) in the definition of the L,
norm in (34).



{A,b,c,d} system description. Here we shall consider the
latter. Scaling 1s achieved by changing the set { f(s)} to a
new set { f (s)} which differ only by constant factors, that
is

fi(s) =afi(s) (37)
so that the magnitudes of { X,(s)} are
IX)l=M, Vi (38)
It follows that the scaling constants must be
M 1
=M (39)

and the scaled f functions will have the norms

. M
W=7

u

(40)

In many cases precise values of M, and M may not be
known. A convenient assumption in such a caseis M, = M
which results in

1
Q= m (41)
and
=1 (42)

Physically speaking this implies that for the particular
norm chosen the scaled filter will be able to accommodate
input signals as large as those allowed at amplifier outputs.

We would next like to know the effect of scaling on filter
performance figures, in particular output noise and sensi-
tivity, and on {4, b,c,d }. Toward that end we note that
scaling is achieved by multiplying the vector f by a
diagonal matrix T having the scaling factors o, a5, -, a,
as its elements

f(s) =Tf(s). (43)
Thus, in terms of F we have
F=TF. (44)
Now using (16) yields
G=T'G (45)
which results in the scaled g functions
g(s) =T7g(s). (46)

It follows that the noise gains are scaled by the inverse
factors (1/a,), (1/a,),---,(1/a,). This is a very interest-
ing result: by scaling the signal gains so that the output
signal levels are maximized we automatically reduce the
noise gains by the same factors. Thus scaling maximizes
the dynamic range of a given design.

It can be easily shown that scaling according to (43)
results in the parameters {A~, b é d } of the scaled system
given by

{A~,5,E,c7}={TAT‘1,Tb,T‘1c,d}. (47)

Thus, 4, = (a,-/aj)A,-j, ; a,b,, and ¢, =(c;/a;). It fol-

lows that the structure remains unchanged. Also, using

(19)—(23) shows that the sensitivities to {4, b, ¢, d } and to
integrator gains do not change by scaling. Note, however,
that because 4,; and b, change, the integrator gains will
change and thus the sensitivities to op amp nonidealities
will change. It turns out, however, that well scaled struc-
tures tend to have low integrator gains and hence low
sensitivities to op amps.

To illustrate the scaling process consider the third-order
filter that we have been using as a “running example”.
Assume that we expect the input signal to have a constant
(white) spectral density of 1 V/yrad/s. Choosing L,
norms for measuring signals we obtain for the three f
functions

1fill,=1.618 | f,ll,=0.8862 | f;ll,=0.7236.
Now if we decide, for instance, that a 1.5 V rms level is

acceptable at the output of each integrator [14] we may
scale { f;(s)} according to

1.5
T
Thus, for instance, f,(s) changes to
- 1.036
fa(s) 07236 3( )= ( )

Note that g, increased, but then the unscaled filter would
not have been able to tolerate the 1 V/y/rad/s signal at
the input because x; would have been too large. Thus we
scaled f; down to allow full signal swing, and f, and f,
up to reduce g, and g, and thus noise.

Note that this approach to scaling is more general (since
it is applicable to arbitrary structures), more exact (because
it uses a realistic statistical model for the input signal
rather than a swept-frequency model), and easier to under-
stand than that presented in [10].

D. Structures with Optimum Dynamic Range

Scaling optimizes the dynamic range of a given structure,
but some structures are inherently better for dynamic range
than others. This subsection adapts for analog filters the
results of [16] which show how to construct a state-space
digital filter with optimum dynamic range. Such a structure
has the lowest L ,||g;||3 over all L,-scaled filters and thus
has the highest dynamic range possible.

The results follow from an analysis of the behaviour of
two matrices, K and W, which give correlation among
{ fi(jw)} and { g,(jw)}, respectively. They are defined by

A
K, ;= 8 f, (48)
A
W, ;= 8i'8; (49)
where - denotes an inner product. Although any inner
product may be used without affecting the results of [16]

we shall select the inner product that yields squared L,
norms for the diagonal elements, K,; and W,,. Thus we use

1o [ fw) 1 (o) do. (50)



Mullis and Roberts [16] investigated the dynamic range
of structures by examining the product K, W,, = || fil3lg.3.
This product is not affected by scaling but it does change
from one structure to another. If one scales a structure with
a given L K, W, in order to get K, = |if,.||§__=1 Vi, then the
output noise of the L,-scaled filter is LW, =¥.K,W,, =
Y. K, W,. The figure ¥ K, W,, therefore, shows the inherent
dynamic range of the structure.

Mullis and Roberts [16] show how to use linear transfor-
mations to generate realizations having minimum ¥, K, W,..
The resulting structure has interesting properties. By suit-
able scaling it may be made to satisfy two conditions

K=W

and K, = K, Vi, j. The condition K = W implies a sort of
self-duality, because it says that the interrelationships
among { f;} are the same as those among { g;}. This kind
of symmetry appears also in some minimum-sensitivity
structures [14], and bears a thought-provoking resemblance
to a reciprocity condition.

The derivation of {16] for minimum X K, W, relies on
the invariance of the eigenvalues of KW. These eigenvalues
can be determined from the product KW for any realiza-
tion of the given transfer function. Denoting these eigen-
values p? (they have also been called “principal values”
and “second-order modes”) the sum ¥ K, ;W;; for the reali-
zation with optimum dynamic range is given by

1 2
ZKiiI'Vii = ;(Zl‘-,) .
t 1

(51)

This figure represents the lowest possible noise obtainable
for a given transfer function ¢(s) and thus serves as a
target for comparing the dynamic range of a given realiza-
tion.

The realization having optimum dynamic range turns
out to be rather difficult to obtain (it requires an iterative
time-consuming procedure) and its structure is fully dense
(that is, has nonzero values for every {4, b,¢c,d} coeffi-
cient). One might, therefore, wish to find a relatively sparse
suboptimum system (Section V) as long as the dynamic
range performance sacrificed by so doing is not excessive.

E. Orthogonality and Angles

IF synthesis is based on the selection of n linearly
independent functions to serve as { f;(s)} or { g,(s)}. The
question arises as to the effect on performance of selecting
two or more functions that exhibit “near dependency”. A
partial answer to this question is found by examining the
relationship in (16). Obviously two f functions that are
“close” to each other will cause the g functions to grow in
value and this in turn results in increased sensitivities and
noise (Section V). At this point we wish to quantify this
notion of near dependence.

The concept of inner product introduced above may be
used to define “angles” among { f,(jw)} vectors. As a
particularly interesting case, two (nonzero) vectors f; and
/; are said to be orthogonal when f;-f;=0. In general, the

TABLEI
TRANSFER FUNCTION AND OTHER PARAMETERS FOR DESIGN

EXAMPLE
Polynomial: Natural At i A i N of
Modes Poles Zeros (dt(syds]
Leading 1210.19 531436 3896.185 128628
coefficient:
List of - 0681354 | 916348 0 * 1.909524 -0.0357517= j.741621
roots: - 06388+ j.788556 0 + 198919467  -0611769+ j 851543
-0232875+ j.710193 =+ j1.25008 * j.796951 - 039558+ j 9689114
02628752 j1.00448 £i39736  +j.723907 030864+ j1.42125
0057+ j3138
- 937486
95568
[}

angle between two vectors is given by &

f-f
§& cost| 2l
o [nf,-nznf,-uz]

This definition has the natural geometric properties for
angles: in particular if the angle between two vectors is 0,
then they are aligned (i.e., one is just a scalar multiple of
the other).

Using the concept of angle we can say that a system
“almost” has linear dependency among its { f;} if the angle
between two { f;} is very small (or, better, if the angle
between some f; and the subspace spanned by the others is
very small). Application and illustration of this concept is
given in the next section in the context of design examples.

(52)

V. _APPLICATIONS

In this section the IF method is employed in the synthe-
sis and analysis of a number of realizations for an eighth-
order active bandpass filter. The sensitivity and noise prop-
erties of these realizations are evaluated and compared to
theoretical lower bounds. It is shown how one can alter the
structure of known realizations as well as synthesize new
structures to approach these lower bounds.

The filter to be investigated meets an arithmetically
symmetric set of specifications [10]:

passband: 1 to 1.4 kHz with 0.4-dB ripple and unity
gain;

stopbands: <700 Hz and >1700 Hz with 50-dB
minimum attenuation.

We will work throughout with a frequency normalized
version in which the upper passband edge is 1 rad /s. Table
I lists the roots and leading coefficients of the various
polynomials that characterize the eighth order transfer
function meeting these specifications. Also shown are the
numerator roots of (dt¢(s))/ds which are needed for the
derivative-based design described below. All the realiza-
tions presented will be scaled so that || f||, =1, Vi.
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Fig. 9. An eighth-order LC ladder bandpass filter to be simulated.

TABLEII
ZEROS OF THE INTERMEDIATE TRANSFER FUNCTIONS OF THE
LADDER OF F1G. 9

Inter , roots of
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- DAA2SE jBSALAS
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0

1
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0
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1
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A. Design Based on LC Ladder Simulation

Fig. 9 shows an LC ladder realization of the eighth-order
bandpass filter. It has ten reactive components and thus
two “extra” states which must be discarded and eight
independent states selected for simulation. However, apart
from ensuring linear independence care must be exercised
in this selection process [14], [19], or all the advantages of
ladder simulation will be lost, as illustrated below.

Analysis of the ladder using FILTOR 2 [20] gives its
intermediate transfer functions, listed in Table I3 As a
first attempt at simulating this filter we discard states V.,
and V,,. The transfer functions to the remaining eight
states (I,q, 114, Vs, Vs, 115, Vess Vers I1g)  constitute
{f:(s)} to be used in the IF synthesis procedure. The
resulting realization has the noise characteristics

[;m.»(jw)l’]

plotted in Fig. 10 and labeled Ladder 1. The output noise
due to each of the eight integrators

llgill3 =
[7.78 9.76 66.2 3455 9.76 406.5 49.7 17.8]

and so the total output noise for this L,-scaled filer is
Zllgill3 = 902.9.

For comparison purposes, the total output noise for the
optimum-dynamic-range realization of this filter was
evaluated using (51) and found to be 67.4. Thus, this
ladder simulation has more than 5 dB of noise above the
optimum. Furthermore, the results above indicate that
integrators 4 and 6 generate most of the total noise.
Examination of the A matrix (not shown here because of
space limitations) shows that the first two rows contain
fairly large elements in columns 4 and 6. This suggests that
fs and f; are nearly equal and that subtraction is being
used to form inputs sx; and sx,. That there is excessive
correlation between states 4 and 6 was confirmed by
evaluating the angle between f, and f; using (52). The
angle was found to be 21°. Furthermore, sensitivity analy-
sis showed that the sensitivities to integrators 4 and 6 are
between 10 and 15 times greater than the optimum value.

A much better simulation of this ladder was obtained by
replacing the state variables V., and V., by V., and V,.
The noise and worst-case relative sensitivity of the resulting
realization are plotted in Figs. 10 and 11, respectively, and
labelled Ladder 2. It was found that for this realization all
A,; are less than 1 in magnitude and that all integrator
noise contributions are comparable in value, with the total

It might be observed that many of the roots of the polynomials are
quite close to the roots of the derivative of #(s) (listed in Table I), an
interesting observation in view of the result in (28) for minimum-sensitiv-
ity filters.
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Fig. 10. The total output noise, L;|g;( jw)|?, for the various realizations
considered.

noise being 72.7 which is within 0.4 dB of the optimum.
Also, from Fig. 11 we observe that over the passband the
worst case sensitivity is near the optimum value of 1/8.
Thus the filter is approximately equally sensitive to each of
its eight integrators in the passband. Over most of the
stopbands, however, the sensitivity is about 1/2, implying
that a pair of integrators dominate performance.

Finally, we note that this canonic realization with near
optimum passband performance has a fairly sparse A4
matrix, with only 27 of the 81 elements being non-zero,
and that its b and ¢ have one element each.

B. Cascade Design

The cascade design investigated uses four two-integrator
loops connected in cascade with zeros formed by summing
the two outputs of each section at the inputs of integrators
in later sections. Denoting the transfer function of the jtt

section I, the { f,(s)} appearing in the kth section are

fi(s) = [M

]—[I‘

ek(s)

,+1(S

(s)

where e¢,(s) is the denominator polynomial of the kth
section.

Fig. 12 shows a particular choice of factors I, for #(s),
that is, a particular “pairing and ordering” [10], [17]: each
singularity is labelled with the index number of the section
(T') which realizes it. This is done following the rule-of-
thumb in [10], [17]. In particular, the sections are ordered
to have successively higher Q factors from input to output,
with the low-pass and high-pass sections alternated. The
resulting realization, obtained using IF synthesis, was found
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to have a total output noise of 125.5 which is 3 dB higher
than the optimum.

The ordering used above obviously lacks symmetry. On
the other hand, the dual roles of {f,(s)} and {g;(s)}
suggest that if a particular design is good then its dual
must also be. Here by dual we mean a new system derived
by interchanging { f;} and {g;} of a system, which inter-
changes inputs and outputs in a state-space structure.
Therefore, we propose a different ordering: that the
highest-Q sections of a cascade filter be placed in the
middle of the structure and the low-Q sections on the
outside. Another cascade realization was designed follow-
ing this new ordering rule with the ordering as indicated in
Fig. 13. The noise and sensitivity performance of the

resulting realization are plotted in Figs. 10 and 11. The
total noise was found to be 109.7, lower than that of the
first cascade with the spectrum slightly “peakier” than that
of the good ladder simulation.

For this cascade design we observe that S, ., =1/2 over
the passband and most of the stopbands. Thus while the
stopbands performance is similar to that of the ladder
simulation the passband sensitivity is higher by a factor of
(n/2). This is because in the cascade two integrators
dominate performance in any frequency region.

C. A Companion-Form Design

For a companion-form realization, Fig. 14, the { f,(s)}
are simply {s'~'/e(s)}. The noise and sensitivity perfor-
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Fig. 13.  An alternative section ordering that results in a cascade design
with better performance than that obtained following the usual practice.

mance of the resulting system are shown in Figs. 10 and 11
and are obviously much worse than those for any of the
other realizations attempted. The poor performance is due
to the “near dependence” of some of the { f,(s)}. Specifi-
cally, K3 = K,, =K, ;,, = 0.98 which means that every f,
is 98 percent correlated with f;,, and f,_,, or separated by
an angle of only 13° from its second derivative.

D. An Orthonormal Realization

Since realizations in which some of the f functions
exhibit near dependencies feature increased noise and
sensitivity, it would be interesting to examine a realization
in which all { f,(s)} are orthogonal. We call such a system,
when L,-scaled such that | f|l,=1 Vi, an orthonormal
realization. One can be obtained from any set of indepen-
dent { f,(s)} by using the Gram-Schmidt orthonormaliza-
tion procedure [21].

Fig. 14. Signal-flow graph representation of the companion-form reali -
zation.

Iy /,

T T 1

Fig. 15. A singly-terminated LC ladder that realizes the poles of the
eighth-order filter. It turns out that the orthonormal realization is a
simulation of this network.

TABLE 111
INTERMEDIATE FUNCTIONS FOR THE ORTHONORMAL REALIZATION
Function Leading List of
coefficient roots

In 0.00165
/2 0.002065 ]
/s 001105 * j0.8033
fa 001277 0.+ j 82457
/s 00677 +j0.7414, * 093742
I 0.08044 0, * j0.75018, * j0.94929
L 030171 7126, + 8335, = {9848
/s 034 0, * j0.7225, = J0.8561, + j0.9943

Starting from the set { f,=s'"!/e(s)} (which is the one
realized in the companion form) we obtain for the ortho-
normal system the IF’s show in Table III. It is interesting
to note that these { f,(s)} have notches in the filter pass-
band. Since sensitivities are proportional to {f(s)} it
follows that various sensitivities go to zero in the passband.
Note that both magnitude and phase sensitivities are forced
to zero, where only magnitude sensitivity is zero in a
ladder. The net effect is, however, not as good as this
would suggest because not all sensitivities are forced to
zero simultaneously and those that are not zero become
larger than they would be for, say, a minimum-sensitivity
structure.

For the orthonormal realization the total output noise is
¥.llg:l13 =100, slightly better than the cascade design and
within about 2 dB of the optimum. The resulting system
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Fig. 16. Assignment of derivative roots to { f;(s)}.

has a sparse 4 matrix and in fact turns out to be a
simulation of a singly-terminated LC ladder network that
realizes the filter poles (Fig. 15). The noise and sensitivity
(Figs. 10 and 11) are comparable to those for a good
cascade design. Finally, we note that the orthonormal
property may be useful in adaptive filtering.

E. A Derivative-Based Design

From equation (28) we see that if the minimum-sensitiv-
ity realization exists then its { f;(s)} must divide ¢’(s). In
an attempt to find this realization, or one close to it, we
choose various sets { f;(s)} by combining the prime factors
of t’(s), and investigate the resulting system.

Fig. 16 is a sketch of the s-plane showing roots of both
t(s) and t’(s) (see also Table I). It shows with each root of
the numerator of ¢’(s) a list of the index numbers i of the
{ f:(s)} that contain that root for a particular design. This
particular choice of { f,(s)} was made to have a number of
symmetries, one of which gives a sort of “reciprocity” and
one of which tends to force the system to have substruc-
tures resembling the minimum-sensitivity biquads dis-
cussed elsewhere [15].

We expect some sort of “reciprocity” to be useful be-
cause we know that, because of the dual roles of { f;} and
{g;}, taking the dual of a good system ({/f;}={&})
should yield another good one. That in turn suggests that if
a unique best system exists it must be self-dual. The
{ f.(s)} in Fig. 16 are so chosen that the factors of ¢'(s)
missing from any f,(s) (which would be the factors of g,(s)
if this happened to be the minimum-sensitivity realization)
appear in fy_,, thatis, fify=f,f1=fife=fufs =1'(5).

We have also chosen factors so that all {f(s)} are
bandpass in appearance, that is we have paired corre-
sponding factors from above and below the band centre.
This was done because some preliminary results in our
current investigation of minimum-sensitivity structures in-
dicate that for a bandpass filter, the minimum sensitivity
realization must be composed of bandpass subfilters.

The resulting realization has a total output noise of
73.96, very close to that of the best ladder simulation
circuit. The output noise spectrum, shown in Fig. 10, is
also similar to that of the ladder simulation. Most interest-
ing, however, is the sensitivity performance, plotted in Fig.
11. While the lower-stopband performance is mediocre,
this filter is superior to any other in the upper stopband
and in the passband, where it is close to having minimum-
sensitivity performance (S, ,, =1/8). Unfortunately, how-
ever, the system matrices are fairly dense.

VI. CONCLUSIONS

A simple procedure has been presented for the synthesis
of state-space analog filters. The method is based on the
selection of an appropriate set of intermediate transfer
functions. It has been shown that the filter sensitivity and
dynamic range properties are easily determined from its
intermediate functions. Therefore, it is possible to optimize
sensitivity and dynamic range by the appropriate choice of
intermediate functions. A number of the results presented
should aid in this selection process.

Application of the IF theory has been demonstrated via
a comparative study of analog filter structures in the
context of a bandpass filter design. In doing so, we have
shown a new and very general technique for performing
ladder simulation, suggested an improvement in cascade
design, uncovered an interesting property of singly
terminated all-pole ladders, and derived a new design
superior in the upper stopband to any other. In conclusion,
we believe that the intermediate function method yields
valuable design guidance and theoretical insights.
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