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Abstract

Among the various linear infinite impulse response (IIR) structures for adaptive
filters, cascade IIR filters are notable for easy stability monitoring and good sensitivity
performance. However, their high cost for computing gradients is a problem. A novel
technique of backpropagating the desired signal is proposed and then a cascade struc-
ture satisfying the requirements of this technique is developed, resulting in an efficient
adaptive IIR filter. It is shown that the equation-error formulation is just a special case
of this backpropagation idea.

I. Introduction

An adaptive linear IIR filter has advantages in computation when a system is

better modeled by a pole-zero transfer function than by a zero-only function, especially

when poles are close to the unit circle in the z-domain. Several structures have been

proposed for adaptive linear IIR filters, including direct form [ 1 -4]  lattice form [5-7]

cascade-form [ 8- 12], parallel-form [ 13,14], and recently, state-space structures [ 15].

Among them, the direct form is most popular in the literature. However, an adaptive

filter may go unstable during adaptation and it is difficult to ensure the stability

direct-form filter with an order above two. High order direct-form filters also have

poor sensitivity performance, which means that a slight change in a coefficient

of a

very

will
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result in a large change in filter output. This is undesirable for an adaptive filter since its

coefficients are constantly affected by measurement noise and quantization noise. Both

cascade form and parallel form have easy stability checks and low sensitivities. The

parallel form has difficulties implementing a multiple pole.

A cascade IIR structure was developed for both the output-error formulation [ 11]

and the equation-error formulation [12]. It implements the filter denominator in cas-

cade form and the numerator in transversal form. An adaptive cascade filter, composed

of IIR notch biquads, was developed for the output-error formulation in [8,9], which is

suitable for detecting and enhancing multiple sinusoids in applications in communica-

tions and radar. Another cascade IlR filter presented in [ 10] was based on the

equation-error formulation and the roots of the filter were directly adapted.

One problem with existing adaptive cascade filters is the complexity of computing

filter gradients, which is normally quadratic in the filter order. To solve this problem, an

efficient cascade IIR filter is proposed based on a novel concept of backpropagating the

desired signal [ 16,171. The filter consists of a transversal section and cascaded all-pole

second-order sections. The computation for adaptation is about the same as that

required by the filter itself when the LMS algorithm is used. It is shown that the

equation-error formulation is only a special case of this method of backpropagating the

desired signal. The adaptive filter presented here has a similar structure to those in

[ 11,121, but requires much less computation.
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II. Backpropagation Formulation

The popular output-error formulation minimizes the mean square of the error com-

puted at the filter output side, where the error is a difference of the filter output and a

desired signal. This section proposes a different scheme in which a desired signal is

backpropagated and intermediate errors are generated, then the filter adjusts its

coefficients to minimize the mean squares of the intermediate errors.

The complexity of gradient computation of a conventional output-error cascade

filter is due to the fact that the filter objective is minimization of the mean square of the

output error and gradient signals of a section have to pass the subsequent sections to

form gradient signals at the filter output side. If some kind of intermediate errors can

be generated and mean squares of intermediate errors, instead of the output error, are

minimized, the computation will be more efficient. A structure with cascaded sections

is shown in the upper part of Fig. 1, where D (z) is the z-transform of the desired signal

d(k). A desired signal is specified in many applications such as echo cancellation

noise cancellation, identification, and equalization. The transfer function 7’i(z) can be

arbitrary as long as its inverse is stable. The desired signal can be backpropagated into

the system with cascaded inverse filter sections. Then, we can employ the intermediate

desired signals to generate the intermediate error signals and adapt the coefficients.

If the desired signal is not backpropagated through the transversal section, the

filter structure shown in the upper part of Fig.2 satisfies the stability requirement of the

backpropagation method. An nth order filter is described by a transversal section



yf&~ =mM4
and m all-pole second-order sections

where

and

Ym(z) = Y(z).

The parameter m is equal to n / 2  if the order n is even, otherwise it is equal to (n +1)/2

and one of the “second-order” sections is in fact a first-order section. The intermediate

desired signals and the intermediate errors are generated as shown in Fig.2. The

transversal section B and the all-zero second-order sections Ai can be adapted to minim-

ize the mean square of the intermediate errors.

like that of an LMS

It is clear that

where u(k) = ( u(k)

the coefficient vector b of the transversal section B can be updated

transversal filter:

bk+’ = bk + 2pbe 1 (k)u(k)

u(k-I) ..a u(k-n))Tandb=(bubl l ** bn)T.

(3

Since the signals lli+l (z), Di+z(z)p . . . , &+I (z) ( where &+I (z) = D (z) ) axe

independent of the coefficients of the filter section Ai, the derivatives of the signal Di

with respect to the coefficients of the section Ai are nonrecursive:
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where the vector ai = ( ai 1 ai )‘. These coefficients can also be updated like those of

an LMS transversal filter:

a;+’ = a; + 2pqei(k)di+l (k)

where di+l (k) = ( di+l (k-l) di+l (k-2) )T.

Each all-zero second-order section Ai is guaranteed to be stable and has a global

minimum, although there is a possible bias in coefficient estimates when a measure-

ment noise is present. An all-pole second-order section l/Ai copies coefficients from its

corresponding all-zero second-order section Ai, as indicated by the dashed lines in

Fig.2. In the rest of the paper, the sections Ai will be referred to as the all-zero second-

order sections and the section B will be referred to as the transversal section. The sec-

tions Ai and B will be collectively called the FIR sections.

The all-zero second-order sections Ai and the transversal section B are adapted in a

similar way to that in which an LMS transversal filter is adapted. Rigorous analysis of

the convergence of the backpropagation cascade IIR filter is difficult because there is

interaction among the FIR sections. If similar assumptions to those in [ 18-20] are made

and the Wiener solution of each FIR section is assumed to be independent of the desired

signal of that section, then the same convergence results as in [18-20] can be obtained

for each section as if the sections were independent.

Due to interaction, the upper bounds of step sizes may be smaller than those

obtained on the assumptions discussed above. In practice, the convergence time for the

whole cascade IIR filter should be greater than or equal to the worst convergence time,
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obtained on the assumptions discussed above, of all the FIR sections.

III. Stability Monitoring

An adaptive filter will be unstable if a pole of an adaptive IIR filter stays outside

the unit circle long enough. This instability can be prevented by checking the pole loca-

tions. One major advantage of the cascade structure is its easy stability check.

It is well known that the stability region of an all-pole second-order section is a tri-

angle which is defined by [2]

1 + ai 1 - ai > 0 , 1 --.--.- ail _-- ai > 0, and 1 + ai > 0. (6)

The triangle is drawn in Fig.3.

This stability condition can be easily monitored during adaptation. An unstable

update might be corrected by reducing step sizes. Once an unstable all-pole second-

order section is detected in an iteration, the filter coefficients are computed again using

smaller step sizes for the feedforward and feedback coefficients with the same gradients

and error signal(s). If there is still at least one unstable all-pole second-order section,

the filter coefficients will not be updated for that iteration. This is one of many possible

ways of implementing stability monitoring and it is the one used in the simulations of

this paper.
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IV. Comparison with Equation-Error Formulation

The equation-error formulation was developed for a direct-form adaptive filter [2].

In the equation-error approach, the feedback signal is replaced by the desired signal so

that the feedback coefficients are updated in an all-zero, nonrecursive form. The filter

output is

Y (2) = A’(z)D (2) + B (z)U (z),

where

A ’ (Z ) = itZiZwi 3 B ( Z ) = 2 bizwie
i = l i=O

Fig.4 gives a popular pictorial description of the Equation-error Direct-form Filter

(EDF), where YOULPUf is the filter output. The error signal is

E(z) = (1 - A (z))D (z) - B (W(z) (8)

which suggests Fig.5 Comparing Fig.5 with Fig. 1, we find that Fig.5 shows that the

equation-error formulation is just a special case of the backpropagation formulation

illustrated in Fig. 1 when there are only two cascaded sections.

V. Simulation Results

The algorithms proposed in this paper have been simulated on a model matching

problem, in which an adaptive filter attempts to match the transfer function of a refer-

ence system. A third order system has been used as a reference system in the simula-

tions:



y (k) = 0.5765~ (k:l) - 0.7810~  (k-2) + 0.3821~ (k-3) +

u(k) + 1.6751~ (k-l) + 1.675lu (k-2) + u (k-3), (9)

where the system poles are 0.5122 and 0.0321&0.8643i and zeroes are -1 and

-0.3375&0.9413i.

For the cascade filter, the section A2 is an all-pole second-order section whose

optimal coefficient vector is a2 = ( 0.06429 a.748 ) T. The section A 1 is an all-pole

first-order section whose optimal coefficient is a 11 = 0.5 122. The optimal coefficient

vector of the transversal section B is b = ( 1 1.6751 1.6751 1 )T.

In all the tests, the mean square errors (MSE) were computed using a data block of

100 samples. The input was a white Gaussian signal with unit variance ( O&? ). The

initial values of the adaptive filter coefficients were set to zero. Three sets of simula-

tions have been performed using the three adaptive filters: Output-error Direct-form

Filter (ODF) [2], BCF (backpropagation cascade filter) of Fig.2, and EDF (equation-

error direct-form filter) of Equation (7) or Fig.4.

In the first set of simulations, there was no additive noise on the reference signal

(desired signal) and the step sizes were chosen so that the adaptive filters reached the

computational noise floor (about -300dB) in the least number of iterations. The step

sizes for the sections A 1 and A 2 were chosen the same for convenience. The conver-

gence curves of the first set of simulations are the lower ones in Figs.6-8. Both the BCF

and the EDF employ backpropagated desired signals. So, it is interesting to compare the

BCF with the EDF. Figs.7 and 8 show that the BCF had a smoother curve and bigger

step sizes. The ODF and the EDF had to use smaller step sizes because of the higher

sensitivities of the direct-form structure. That the ODF and the EDF had spikier curves



is also directly due to the higher sensitivities.

although they can be reduced by using smaller step

convergence.

9

These spikes are undesirable and

sizes, this will result in even slower

In practice, the reference signal is often contaminated by an additive noise, called

measurement noise. An independent white noise of -80dB was added to the reference

signal to investigate the performance of the filters in the presence of measurement

noise. The second set of simulations was performed under this condition. Suppose the

adaptive filters are used to suppress echo in a data transmission channel. In such an

application, the MSE is required to be less than about -60dB Here, we require the MSE

of an adaptive filter be below -70dB allowing a safe margin. The step sizes were

chosen so that the f i l te rs  satisfied this MSE requirement in the least number of itera-

tions. The convergence curves of the second set of simulations are upper ones in

Figs.6-8. The BCF converged after 2.3k iterations. The EDF converged at 5.Ok itera-

tions, and the ODF at 3.8k iterations. Fig.9 shows MSE contour with an adaptation path

for the BCF. The adaptation path of the BCF is not normal to the contours because the

BCF minimizes the mean square of the intermediate errors and the contours were drawn

using the output error. No visible bias in the filter coefficients was observed in the con-

tour of the BCF because the noise level was modest.

In the above simulations, no stability check was employed. Instability of an adap-

tive filter can occur, which might be caused by, for example, a surge of measurement

noise, large step size, and/or large gradients due to steep performance surface. A third

set of simulations was performed to experiment with this. All the conditions in the

third set of simulations were the same as those of the second set, except that there was a

9
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measurement noise surge from sample 600 to 1000. All three adaptive filters went

unstable without stability monitoring when the measurement noise surge became large

enough. Then stability monitoring was activated for the BCF, and the simulation was

performed again. It remained stable and converged well. As expected, it worked well

even if the noise level was very high. Fig.10 shows the convergence curve of the BCF

with a noise surge of 26dB (standard deviation of 20), which shows a typical behavior

of the BCF with stability monitoring. The filter worked normally before and after the

noise surge. It had a high MSE level (but remained stable) during the surge because the

gradient estimate was greatly corrupted.

Simulations were performed to show the effect of the interaction of different sec-

tions on the choice of step sizes. A maximum step size was found for each section

while coefficients of other two sections of the filter were assigned the optimal values.

Then, the coefficients of all three FIR sections were adapted from initial values of zero.

The filter converged when all the step sizes were reduced to their corresponding max-

imum step sizes divided by 3.5. This shows that the interaction among different sec-

tions makes smaller step sizes necessary.

VI. Summary

This paper has studied adaptive cascade IIR filters which have an easy stability

check and low parameter sensitivities. A novel concept has been proposed, which sug-

gests backpropagating the desired signal through the inverse all-pole second-order sec-

tions and producing intermediate errors. This concept was applied to a cascade IIR
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structure, resulting in an efficient adaptive cascade IIR filter. It has been shown that the

equation-error formulation is just a special case of backpropagation of the desired sig-

nal.
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Fig. 1 Backpropagation of the desired signal for a general cascade filter.

Fig.2 Adaptive Backpropagation Cascade Filter (BCF).



Fig.3 The stability tiangle of an all-pole second-order section.
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Fig.4 Equation-error formulation.
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Fig.5 Alternative view of the equation-error formulation.
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Fig.6 Convergence curves for the Output-error Direct-form Filter (ODF).

Upper curve: additive noise of -80 dB, step size for IIR section =
0.0015 and step size for transversal section = 0.015. Lower curve:
no additive noise, step size for IIR section = 0.002 and step size for
transversal section = 0.03.
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Fig.7 Convergence curves for the Backpropagation Cascade Filter (BCF). Upper
curve: additive noise of -80 dB, step size for all-pole second-order section = 0.004
and step size for transversal section = 0.049. Lower curve: no additive noise, step
size for all-pole second-order section
= 0.09.
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Fig.8 Convergence curves for the Equation-error Direct-form Filter (EDF).
Upper curve: additive noise of -80 dB, step size for feedback section = 0.003
and step size for transversal section = 0.015. Lower curve: no additive noise,
step size for feedback section = 0.005 and step size for transversal section
= 0.07.
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Fig.10 Convergence curve for BCF with measurement noise surge of 26
dB from sample 600 to 1000. Step size for all-pole second-order
sections = 0.004 and step size for transversal section = 0.049.


